
The pkgsrc guide

Documentation on the NetBSD packages
system
(2018/01/01)

Alistair Crooks
agc@NetBSD.org

Hubert Feyrer
hubertf@NetBSD.org

The pkgsrc Developers

The pkgsrc guide: Documentation on the NetBSD packages syst em
by Alistair Crooks, Hubert Feyrer, The pkgsrc Developers

Published 2018/01/01 01:26:07
Copyright © 1994-2018 The NetBSD Foundation, Inc

pkgsrc is a centralized package management system for Unix-like operating systems. This guide provides
information for users and developers of pkgsrc. It covers installation of binary and source packages, creation of
binary and source packages and a high-level overview about the infrastructure.

Table of Contents
1. What is pkgsrc?..1

1.1. Introduction...1
1.1.1. Why pkgsrc?...1
1.1.2. Supported platforms...2

1.2. Overview...3
1.3. Terminology..4

1.3.1. Roles involved in pkgsrc...5
1.4. Typography...5

I. The pkgsrc user's guide...1

2. Where to get pkgsrc and how to keep it up-to-date..2
2.1. Getting pkgsrc for the �rst time...2

2.1.1. As tar archive..2
2.1.2. Via anonymous CVS...3

2.2. Keeping pkgsrc up-to-date...3
2.2.1. Via tar �les..4
2.2.2. Via CVS..4

2.2.2.1. Switching between different pkgsrc branches..4
2.2.2.2. What happens to my changes when updating?...4

3. Using pkgsrc on systems other than NetBSD..5
3.1. Binary distribution...5
3.2. Bootstrapping pkgsrc...5

4. Using pkgsrc..6
4.1. Using binary packages...6

4.1.1. Finding binary packages...6
4.1.2. Installing binary packages...6
4.1.3. Deinstalling packages...7
4.1.4. Getting information about installed packages...7
4.1.5. Checking for security vulnerabilities in installedpackages..................................7
4.1.6. Finding if newer versions of your installed packagesare in pkgsrc.....................8
4.1.7. Other administrative functions..8

4.2. Building packages from source...9
4.2.1. Requirements..9
4.2.2. Fetching dist�les...9
4.2.3. How to build and install..10

5. Con�guring pkgsrc...12
5.1. General con�guration..12
5.2. Variables affecting the build process...12
5.3. Variables affecting the installation process...13
5.4. Selecting and con�guring the compiler...14

5.4.1. Selecting the compiler...14
5.4.2. Additional �ags to the compiler (CFLAGS) ...15
5.4.3. Additional �ags to the linker (LDFLAGS)..15

5.5. Developer/advanced settings...15
5.6. Selecting Build Options...16

6. Creating binary packages...17

iii

6.1. Building a single binary package..17
6.2. Settings for creation of binary packages...17

7. Creating binary packages for everything in pkgsrc (bulk builds)..18
7.1. Preparations...18
7.2. Running a pbulk-style bulk build..18

7.2.1. Con�guration..18
7.3. Requirements of a full bulk build..20
7.4. Creating a multiple CD-ROM packages collection...20

7.4.1. Example of cdpack..20
8. Directory layout of the installed �les...21

8.1. File system layout in${LOCALBASE}...21
8.2. File system layout in${VARBASE} ...23

9. Frequently Asked Questions..24
9.1. Are there any mailing lists for pkg-related discussion?..24
9.2. Utilities for package management (pkgtools)..24
9.3. How to use pkgsrc as non-root..25
9.4. How to resume transfers when fetching dist�les?...26
9.5. How can I install/use modular X.org from pkgsrc?...26
9.6. How to fetch �les from behind a �rewall..26
9.7. How to fetch �les from HTTPS sites...26
9.8. How do I tellmake fetchto do passive FTP?...27
9.9. How to fetch all dist�les at once...27
9.10. What does “Don't know how to make /usr/share/tmac/tmac.andoc” mean?.................27
9.11. What does “Could not �nd bsd.own.mk” mean?...28
9.12. Using 'sudo' with pkgsrc...28
9.13. How do I change the location of con�guration �les?..28
9.14. Automated security checks..29
9.15. Why do some packages ignore myCFLAGS?..29
9.16. A package does not build. What shall I do?..29
9.17. What does “Make�le appears to contain unresolved cvs/rcs/??? merge con�icts” mean?

30

II. The pkgsrc developer's guide..31

10. Creating a new pkgsrc package from scratch...32
10.1. Common types of packages...33

10.1.1. Perl modules..33
10.1.2. Python modules and programs..33

10.2. Examples...34
10.2.1. How the www/nvu package came into pkgsrc..34

10.2.1.1. The initial package...34
10.2.1.2. Fixing all kinds of problems to make the package work......................35
10.2.1.3. Installing the package...37

11. Package components - �les, directories and contents..39
11.1.Makefile ..39
11.2.distinfo ..41
11.3.patches/ * ..41

11.3.1. Structure of a single patch �le..41
11.3.2. Creating patch �les...41

iv

11.3.3. Sources where the patch �les come from...42
11.3.4. Patching guidelines...42
11.3.5. Feedback to the author..43

11.4. Other mandatory �les..43
11.5. Optional �les...44

11.5.1. Files affecting the binary package..44
11.5.2. Files affecting the build process..45
11.5.3. Files affecting nothing at all...45

11.6.work * ..45
11.7.files/ * ..46

12. Programming inMakefile s..47
12.1. Caveats...47
12.2.Makefile variables..47

12.2.1. Naming conventions..48
12.3. Code snippets...48

12.3.1. Adding things to a list...48
12.3.2. Echoing a string exactly as-is...49
12.3.3. PassingCFLAGSto GNU con�gure scripts...49
12.3.4. Handling possibly empty variables...49

13. PLIST issues..51
13.1. RCS ID..51
13.2. Semi-automaticPLIST generation..51
13.3. Tweaking output ofmake print-PLIST ...51
13.4. Variable substitution in PLIST..51
13.5. Man page compression..52
13.6. Changing PLIST source withPLIST_SRC..53
13.7. Platform-speci�c and differing PLISTs...53
13.8. Build-speci�c PLISTs...53
13.9. Sharing directories between packages...53

14. Buildlink methodology..55
14.1. Converting packages to use buildlink3..55
14.2. Writingbuildlink3.mk �les ..56

14.2.1. Anatomy of a buildlink3.mk �le...56
14.2.2. UpdatingBUILDLINK_API_DEPENDS. pkg andBUILDLINK_ABI_DEPENDS. pkg in buildlink3.mk

58
14.3. Writingbuiltin.mk �les ..59

14.3.1. Anatomy of abuiltin.mk �le ..59
14.3.2. Global preferences for native or pkgsrc software...60

15. The pkginstall framework..62
15.1. Files and directories outside the installation pre�x...62

15.1.1. Directory manipulation...62
15.1.2. File manipulation..63

15.2. Con�guration �les...63
15.2.1. HowPKG_SYSCONFDIRis set..64
15.2.2. Telling the software where con�guration �les are..64
15.2.3. Patching installations..65
15.2.4. Disabling handling of con�guration �les..65

15.3. System startup scripts..65

v

15.3.1. Disabling handling of system startup scripts..66
15.4. System users and groups...66
15.5. System shells...66

15.5.1. Disabling shell registration...67
15.6. Fonts..67

15.6.1. Disabling automatic update of the fonts databases...67
16. Options handling..68

16.1. Global default options...68
16.2. Converting packages to usebsd.options.mk ..68
16.3. Option Names..70
16.4. Determining the options of dependencies...71

17. The build process...72
17.1. Introduction...72
17.2. Program location...72
17.3. Directories used during the build process..73
17.4. Running a phase..73
17.5. Thefetchphase..73

17.5.1. What to fetch and where to get it from...74
17.5.2. How are the �les fetched?...75

17.6. Thechecksumphase..76
17.7. Theextractphase...76
17.8. Thepatchphase...76
17.9. Thetoolsphase..77
17.10. Thewrapperphase..77
17.11. Thecon�gurephase...77
17.12. Thebuild phase..78
17.13. Thetestphase..79
17.14. Theinstall phase..79
17.15. Thepackagephase...80
17.16. Cleaning up..81
17.17. Other helpful targets..81

18. Tools needed for building or running...86
18.1. Tools for pkgsrc builds..86
18.2. Tools needed by packages...86
18.3. Tools provided by platforms..86

19. Making your package work..88
19.1. General operation..88

19.1.1. How to pull in user-settable variables frommk.conf88
19.1.2. User interaction...88
19.1.3. Handling licenses..89

19.1.3.1. Adding a package with a new license..89
19.1.3.2. Change to the license..90

19.1.4. Restricted packages...90
19.1.5. Handling dependencies...91
19.1.6. Handling con�icts with other packages..92
19.1.7. Packages that cannot or should not be built..93
19.1.8. Packages which should not be deleted, once installed......................................93
19.1.9. Handling packages with security problems..93

vi

19.1.10. How to handle incrementing versions when �xing an existing package........94
19.1.11. Substituting variable text in the package �les (the SUBST framework)........94

19.2. Thefetchphase..95
19.2.1. Packages whose dist�les aren't available for plaindownloading.....................95
19.2.2. How to handle modi�ed dist�les with the 'old' name......................................96
19.2.3. Packages hosted on github.com..96

19.2.3.1. Fetch based on a tagged release...96
19.2.3.2. Fetch based on a speci�c commit...97
19.2.3.3. Fetch based on release..97

19.3. Thecon�gure phase...97
19.3.1. Shared libraries - libtool..97
19.3.2. Using libtool on GNU packages that already support libtool...........................99
19.3.3. GNU Autoconf/Automake..99

19.4. Programming languages..100
19.4.1. C, C++, and Fortran..100
19.4.2. Java..100
19.4.3. Packages containing perl scripts...100
19.4.4. Packages containing shell scripts..101
19.4.5. Other programming languages..101

19.5. Thebuild phase..101
19.5.1. Compiling C and C++ code conditionally..101

19.5.1.1. C preprocessor macros to identify the operating system....................101
19.5.1.2. C preprocessor macros to identify the hardware architecture............102
19.5.1.3. C preprocessor macros to identify the compiler.................................102

19.5.2. How to handle compiler bugs...102
19.5.3. Unde�ned reference to “...”..103

19.5.3.1. Special issue: The SunPro compiler...103
19.5.4. Running out of memory..103

19.6. Theinstall phase..104
19.6.1. Creating needed directories...104
19.6.2. Where to install documentation..104
19.6.3. Installing highscore �les...104
19.6.4. Adding DESTDIR support to packages..105
19.6.5. Packages with hardcoded paths to other interpreters......................................105
19.6.6. Packages installing perl modules..106
19.6.7. Packages installing info �les...106
19.6.8. Packages installing man pages..107
19.6.9. Packages installing GConf data �les...107
19.6.10. Packages installing scrollkeeper/rarian data �les..107
19.6.11. Packages installing X11 fonts...108
19.6.12. Packages installing GTK2 modules..108
19.6.13. Packages installing SGML or XML data..108
19.6.14. Packages installing extensions to the MIME database.................................109
19.6.15. Packages using intltool...109
19.6.16. Packages installing startup scripts..109
19.6.17. Packages installing TeX modules...110
19.6.18. Packages supporting running binaries in emulation110
19.6.19. Packages installing hicolor theme icons...110

vii

19.6.20. Packages installing desktop �les...111
19.7. Marking packages as having problems..111

20. Debugging..112
21. Submitting and Committing...114

21.1. Submitting binary packages..114
21.2. Submitting source packages (for non-NetBSD-developers)..114
21.3. General notes when adding, updating, or removing packages....................................114
21.4. Commit Messages...115
21.5. Committing: Adding a package to CVS..115
21.6. Updating a package to a newer version...116
21.7. Renaming a package in pkgsrc..116
21.8. Moving a package in pkgsrc..117

22. Frequently Asked Questions..118
23. GNOME packaging and porting..120

23.1. Meta packages...120
23.2. Packaging a GNOME application...121
23.3. Updating GNOME to a newer version..122
23.4. Patching guidelines..123

III. The pkgsrc infrastructure internals ..124

24. Design of the pkgsrc infrastructure..125
24.1. The meaning of variable de�nitions..125
24.2. Avoiding problems before they arise...125
24.3. Variable evaluation..126

24.3.1. At load time...126
24.3.2. At runtime...126

24.4. How can variables be speci�ed?..126
24.5. Designing interfaces for Make�le fragments..127

24.5.1. Procedures with parameters..127
24.5.2. Actions taken on behalf of parameters..127

24.6. The order in which �les are loaded...127
24.6.1. The order inbsd.prefs.mk ..128
24.6.2. The order inbsd.pkg.mk ..128

25. Regression tests..129
25.1. Running the regression tests..129
25.2. Adding a new regression test...129

25.2.1. Overridable functions..129
25.2.2. Helper functions..130

26. Porting pkgsrc..131
26.1. Porting pkgsrc to a new operating system...131

A. A simple example package: bison..132

A.1. �les ...132
A.1.1. Make�le...132
A.1.2. DESCR..132
A.1.3. PLIST...132
A.1.4. Checking a package withpkglint ..133

A.2. Steps for building, installing, packaging..133

viii

B. Build logs..136

B.1. Building �glet ...136
B.2. Packaging �glet..137

C. Directory layout of the pkgsrc FTP server...139

C.1.distfiles : The distributed source �les...139
C.2.misc : Miscellaneous things...139
C.3.packages : Binary packages..139
C.4.reports : Bulk build reports..140
C.5.current , pkgsrc-20 xx Qy : source packages...140

D. Editing guidelines for the pkgsrc guide..141

D.1. Make targets...141
D.2. Procedure..141

ix

List of Tables
1-1. Platforms supported by pkgsrc...2
11-1. Patching examples..43
23-1. PLIST handling for GNOME packages...121

x

Chapter 1.

What is pkgsrc?

1.1. Introduction
There is a lot of software freely available for Unix-based systems, which is usually available in form of
the source code. Before such software can be used, it needs tobe con�gured to the local system,
compiled and installed, and this is exactly what The NetBSD Packages Collection (pkgsrc) does. pkgsrc
also has some basic commands to handle binary packages, so that not every user has to build the
packages for himself, which is a time-costly task.

pkgsrc currently contains several thousand packages, including:

• www/apache24 - The Apache web server

• www/firefox - The Firefox web browser

• meta-pkgs/gnome - The GNOME Desktop Environment

• meta-pkgs/kde4 - The K Desktop Environment

. . . just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

1.1.1. Why pkgsrc?

pkgsrc provides the following key features:

• Easy building of software from source as well as the creationand installation of binary packages. The
source and latest patches are retrieved from a master or mirror download site, checksum veri�ed, then
built on your system. Support for binary-only distributions is available for both native platforms and
NetBSD emulated platforms.

• All packages are installed in a consistent directory tree, including binaries, libraries, man pages and
other documentation.

• Tracking of package dependencies automatically, including when performing updates, to ensure
required packages are installed. The con�guration �les of various packages are handled automatically
during updates, so local changes are preserved.

• Like NetBSD, pkgsrc is designed with portability in mind andconsists of highly portable code. This
allows the greatest speed of development when porting to a new platform. This portability also ensures
that pkgsrc isconsistent across all platforms.

1

Chapter 1. What is pkgsrc?

• The installation pre�x, acceptable software licenses, international encryption requirements and
build-time options for a large number of packages are all setin a simple, central con�guration �le.

• The entire source (not including the distribution �les) is freely available under a BSD license, so you
may extend and adapt pkgsrc to your needs. Support for local packages and patches is available right
out of the box, so you can con�gure it speci�cally for your environment.

The following principles are basic to pkgsrc:

• “It should only work if it's right.” — That means, if a packagecontains bugs, it's better to �nd them
and to complain about them rather than to just install the package and hope that it works. There are
numerous checks in pkgsrc that try to �nd such bugs: Static analysis tools (pkgtools/pkglint),
build-time checks (portability of shell scripts), and post-installation checks (installed �les, references
to shared libraries, script interpreters).

• “If it works, it should work everywhere” — Like NetBSD has been ported to many hardware
architectures, pkgsrc has been ported to many operating systems. Care is taken that packages behave
the same on all platforms.

1.1.2. Supported platforms

pkgsrc consists of both a source distribution and a binary distribution for these operating systems. After
retrieving the required source or binaries, you can be up andrunning with pkgsrc in just minutes!

pkgsrc was derived from FreeBSD's ports system, and initially developed for NetBSD only. Since then,
pkgsrc has grown a lot, and now supports the following platforms:

Table 1-1. Platforms supported by pkgsrc

Platform Date Support Added Notes

NetBSD
(http://www.NetBSD.org/)

Aug 1997

Solaris
(http://wwws.sun.com/software/solaris/)

Mar 1999 README.Solaris
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

Linux (http://www.kernel.org/) Jun 1999 README.Linux
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

Darwin / Mac OS X / OS X /
macOS
(https://developer.apple.com/macos/)

Oct 2001 README.MacOSX
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

FreeBSD
(http://www.freebsd.org/)

Nov 2002 README.FreeBSD
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

OpenBSD
(http://www.openbsd.org/)

Nov 2002 README.OpenBSD
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

2

Chapter 1. What is pkgsrc?

Platform Date Support Added Notes

IRIX
(http://www.sgi.com/software/irix/)

Dec 2002 README.IRIX
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo
README.IRIX5.3
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

BSD/OS Dec 2003

AIX (http://www-
1.ibm.com/servers/aix/)

Dec 2003 README.AIX
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

Interix
(http://www.microsoft.com/windows/sfu/)
(Microsoft Windows Services for
Unix)

Mar 2004 README.Interix
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

DragonFlyBSD
(http://www.dragon�ybsd.org/)

Oct 2004

OSF/1 (http://www.tru64.org/) Nov 2004 README.OSF1
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

HP-UX
(http://www.hp.com/products1/unix/)

Apr 2007 README.HPUX
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

Haiku (http://www.haiku-os.org/) Sep 2010 README.Haiku
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

MirBSD
(http://www.mirbsd.org/)

Jan 2011

Minix3 (http://www.minix3.org/) Nov 2011 README.Minix3
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

Cygwin (http://cygwin.com/) Mar 2013 README.Cygwin
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

GNU/kFreeBSD
(http://www.debian.org/ports/kfreebsd-
gnu/)

Jul 2013 README.GNUkFreeBSD
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

Bitrig (http://www.bitrig.org/) Jun 2014 README.Bitrig
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/boo

3

Chapter 1. What is pkgsrc?

1.2. Overview
This document is divided into three parts. The �rst,The pkgsrc user's guide, describes how one can use
one of the packages in the Package Collection, either by installing a precompiled binary package, or by
building one's own copy using the NetBSD package system. Thesecond part,
The pkgsrc developer's guide, explains how to prepare a package so it can be easily built byother
NetBSD users without knowing about the package's building details. The third part,
The pkgsrc infrastructure internalsis intended for those who want to understand how pkgsrc is
implemented.

This document is available in various formats: HTML (index.html), PDF (pkgsrc.pdf), PS (pkgsrc.ps),
TXT (pkgsrc.txt).

1.3. Terminology
There has been a lot of talk about “ports”, “packages”, etc. so far. Here is a description of all the
terminology used within this document.

Package

A set of �les and building instructions that describe what'snecessary to build a certain piece of
software using pkgsrc. Packages are traditionally stored under/usr/pkgsrc , but may be stored in
any location, referred to asPKGSRCDIR.

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSD operating system and can be
bootstrapped to run on non-NetBSD operating systems as well. It handles building (compiling),
installing, and removing of packages.

Dist�le

This term describes the �le or �les that are provided by the author of the piece of software to
distribute his work. All the changes necessary to build on NetBSD are re�ected in the
corresponding package. Usually the dist�le is in the form ofa compressed tar-archive, but other
types are possible, too. Dist�les are usually stored below/usr/pkgsrc/distfiles .

Port

This is the term used by FreeBSD and OpenBSD people for what wecall a package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a dist�le and stuffedtogether in a single.tgz �le so it can
be installed on machines of the same machine architecture without the need to recompile. Packages
are usually generated in/usr/pkgsrc/packages ; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/packages/).

Sometimes, this is referred to by the term “package” too, especially in the context of precompiled
packages.

4

Chapter 1. What is pkgsrc?

Program

The piece of software to be installed which will be constructed from all the �les in the dist�le by the
actions de�ned in the corresponding package.

1.3.1. Roles involved in pkgsrc

pkgsrc users

The pkgsrc users are people who use the packages provided by pkgsrc. Typically they are system
administrators. The people using the software that is inside the packages (maybe called “end users”)
are not covered by the pkgsrc guide.

There are two kinds of pkgsrc users: Some only want to installpre-built binary packages. Others
build the pkgsrc packages from source, either for installing them directly or for building binary
packages themselves. For pkgsrc usersPart I inThe pkgsrc guideshould provide all necessary
documentation.

package maintainers

A package maintainer creates packages as described inPart II in The pkgsrc guide.

infrastructure developers

These people are involved in all those �les that live in themk/ directory and below. Only these
people should need to read throughPart III in The pkgsrc guide, though others might be curious,
too.

1.4. Typography
When giving examples for commands, shell prompts are used toshow if the command should/can be
issued as root, or if “normal” user privileges are suf�cient. We use a# for root's shell prompt, a%for
users' shell prompt, assuming they use the C-shell or tcsh and a$ for bourne shell and derivatives.

5

I. The pkgsrc user's guide

Chapter 2.

Where to get pkgsrc and how to
keep it up-to-date

Before you download and extract the �les, you need to decide where you want to extract them. When
using pkgsrc as root user, pkgsrc is usually installed in/usr/pkgsrc . You are though free to install the
sources and binary packages wherever you want in your �lesystem, provided that the pathname does not
contain white-space or other characters that are interpreted specially by the shell and some other
programs. A safe bet is to use only letters, digits, underscores and dashes.

2.1. Getting pkgsrc for the �rst time
Before you download any pkgsrc �les, you should decide whether you want thecurrentbranch or the
stablebranch. The latter is forked on a quarterly basis from the current branch and only gets modi�ed for
security updates. The names of the stable branches are builtfrom the year and the quarter, for example
2018Q3.

The second step is to decidehowyou want to download pkgsrc. You can get it as a tar �le or via CVS.
Both ways are described here.

Note that tar archive contains CVS working copy. Thus you canswitch to using CVS at any later time.

2.1.1. As tar archive

The primary download location for all pkgsrc �les is http://ftp.NetBSD.org/pub/pkgsrc/ or
ftp://ftp.NetBSD.org/pub/pkgsrc/ (it points to the same location). There are a number of subdirectories
for different purposes, which are described in detail inAppendix C.

The tar archive for the current branch is in the directorycurrent and is calledpkgsrc.tar.gz

(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz). It is autogenerated weekly.

To save download time we provide bzip2- and xz-compressed archives which are published at
pkgsrc.tar.bz2 (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.bz2) andpkgsrc.tar.xz

(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.xz) respectively.

You can fetch the same �les using FTP.

The tar �le for the stable branch 2018Q3 is in the directorypkgsrc-2018Q3 and is also called
pkgsrc.tar.gz (https://cdn.NetBSD.org/pub/pkgsrc/pkgsrc-2018Q3/pkgsrc.tar.gz).

To download the latest pkgsrc stable tarball, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/pkgsrc-2018Q3/pk gsrc.tar.gz

If you prefer, you can also fetch it using "wget", "curl", or your web browser.

2

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

Then, extract it with:

$ tar -xzf pkgsrc.tar.gz -C /usr

This will create the directorypkgsrc/ in /usr/ and all the package source will be stored under
/usr/pkgsrc/ .

To download pkgsrc-current, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.t ar.gz

2.1.2. Via anonymous CVS

To fetch a speci�c pkgsrc stable branch, run:

$ cd /usr && cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsro ot checkout -r pkgsrc-2018Q3 -P pkgsrc

This will create the directorypkgsrc/ in your /usr/ directory and all the package source will be stored
under/usr/pkgsrc/ .

To fetch the pkgsrc current branch, run:

$ cd /usr && cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsro ot checkout -P pkgsrc

Refer to the list of available mirrors (http://www.NetBSD.org/mirrors/#anoncvs) to choose a faster CVS
mirror, if needed.

If you get error messages fromrsh , you need to set CVS_RSH variable. E.g.:

$ cd /usr && env CVS_RSH=ssh cvs -q -z2 -d anoncvs@anoncvs.Net BSD.org:/cvsroot checkout -P pkgsrc

Refer to documentation on your command shell how to set CVS_RSH=ssh permanently. For Bourne
shells, you can set it in your.profile or better globally in/etc/profile :

set CVS remote shell command
CVS_RSH=ssh
export CVS_RSH

By default, CVS doesn't do things like most people would expect it to do. But there is a way to convince
CVS, by creating a �le called.cvsrc in your home directory and saving the following lines to it. This
�le will save you lots of headache and some bug reports, so we strongly recommend it. You can �nd an
explanation of this �le in the CVS documentation.

recommended CVS configuration file from the pkgsrc guide
cvs -q -z2
checkout -P
update -dP
diff -upN
rdiff -u
release -d

3

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

2.2. Keeping pkgsrc up-to-date
The preferred way to keep pkgsrc up-to-date is via CVS (whichalso works if you have �rst installed it
via a tar �le). It saves bandwidth and hard disk activity, compared to downloading the tar �le again.

2.2.1. Via tar �les

Warning
When updating from a tar �le, you �rst need to completely remo ve the old pkgsrc
directory. Otherwise those �les that have been removed from pkgsrc in the mean
time will not be removed on your local disk, resulting in inconsistencies. When
removing the old �les, any changes that you have done to the pk gsrc �les will be
lost after updating. Therefore updating via CVS is strongly recommended.

Note that by default the dist�les and the binary packages aresaved in the pkgsrc tree, so don't forget to
rescue them before updating. You can also con�gure pkgsrc tostore dist�les and packages in directories
outside the pkgsrc tree by setting theDISTDIR andPACKAGESvariables. SeeChapter 5for the details.

To update pkgsrc from a tar �le, download the tar �le as explained above. Then, make sure that you have
not made any changes to the �les in the pkgsrc directory. Remove the pkgsrc directory and extract the
new tar �le. Done.

2.2.2. Via CVS

To update pkgsrc via CVS, change to thepkgsrc directory and run cvs:

$ cd /usr/pkgsrc && cvs update -dP

If you get error messages fromrsh , you need to set CVS_RSH variable as described above. E.g.:

$ cd /usr/pkgsrc && env CVS_RSH=ssh cvs up -dP

2.2.2.1. Switching between different pkgsrc branches

When updating pkgsrc, the CVS program keeps track of the branch you selected. But if you, for
whatever reason, want to switch from the stable branch to thecurrent one, you can do it by adding the
option “-A” after the “update” keyword. To switch from the current branch back to the stable branch, add
the “-rpkgsrc-2018Q3” option.

2.2.2.2. What happens to my changes when updating?

When you update pkgsrc, the CVS program will only touch those�les that are registered in the CVS
repository. That means that any packages that you created onyour own will stay unmodi�ed. If you
change �les that are managed by CVS, later updates will try tomerge your changes with those that have
been done by others. See the CVS manual, chapter “update” fordetails.

4

Chapter 3.

Using pkgsrc on systems other
than NetBSD

3.1. Binary distribution
SeeSection 4.1.

3.2. Bootstrapping pkgsrc
pkgsrc can be bootstrapped for use in two different modes: privileged and unprivileged one. In
unprivileged mode in contrast to privileged one all programs are installed under one particular user and
cannot utilise privileged operations (packages don't create special users and all special �le permissions
like setuid are ignored).

Installing the bootstrap kit from source should be as simpleas:

env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsr oot checkout -P pkgsrc
cd pkgsrc/bootstrap
./bootstrap

To bootstrap in unprivileged mode pass “--unprivileged” �ag to bootstrap

By default, in privileged mode pkgsrc uses/usr/pkg for pre�x where programs will be installed in, and
/usr/pkg/pkgdb for the package database directory where pkgsrc will do its internal bookkeeping,
/var is used asvarbase, where packages install their persistent data. In unprivileged mode pkgsrc uses
~/pkg for pre�x, ~/pkg/pkgdb for the package database, and~/pkg/var for varbase.

You can change default layout using command-line arguments. Run “./bootstrap --help” to get details.

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

Note: It is possible to bootstrap multiple instances of pkgsrc using non-intersecting directories. Use
bmake corresponding to the installation you're working with to build and install packages.

5

Chapter 4.

Using pkgsrc

Basically, there are two ways of using pkgsrc. The �rst is to only install the package tools and to use
binary packages that someone else has prepared. This is the “pkg” in pkgsrc. The second way is to install
the “src” of pkgsrc, too. Then you are able to build your own packages, and you can still use binary
packages from someone else.

4.1. Using binary packages
On the ftp.NetBSD.org (ftp://ftp.NetBSD.org/) server andits mirrors, there are collections of binary
packages, ready to be installed. These binary packages havebeen built using the default settings for the
directories, that is:

• /usr/pkg for LOCALBASE, where most of the �les are installed,

• /usr/pkg/etc for con�guration �les,

• /var for VARBASE, where those �les are installed that may change after installation.

If you cannot use these directories for whatever reasons (maybe because you're not root), you cannot use
these binary packages, but have to build the packages yourself, which is explained inSection 3.2.

4.1.1. Finding binary packages

To install binary packages, you �rst need to know from where to get them. The �rst place where you
should look is on the main pkgsrc FTP server in the directory/pub/pkgsrc/packages

(ftp://ftp.NetBSD.org/pub/pkgsrc/packages/).

This directory contains binary packages for multiple platforms. First, select your operating system.
(Ignore the directories with version numbers attached to it, they just exist for legacy reasons.) Then,
select your hardware architecture, and in the third step, the OS version and the “version” of pkgsrc.

In this directory, you often �nd a �le calledbootstrap.tar.gz which contains the package
management tools. If the �le is missing, it is likely that your operating system already provides those
tools. Download the �le and extract it in the/ directory. It will create the directories/usr/pkg

(containing the tools for managing binary packages and the database of installed packages).

4.1.2. Installing binary packages

In the directory from the last section, there is a subdirectory calledAll/ , which contains all the binary
packages that are available for the platform, excluding those that may not be distributed via FTP or
CDROM (depending on which medium you are using).

6

Chapter 4. Using pkgsrc

To install packages directly from an FTP or HTTP server, run the following commands in a
Bourne-compatible shell (be sure tosu to root �rst):

PATH="/usr/pkg/sbin:$PATH"
PKG_PATH="ftp://ftp.NetBSD.org/pub/pkgsrc/packages/ OPSYS/ ARCH/ VERSIONS/All/"
export PATH PKG_PATH

Instead of URLs, you can also use local paths, for example if you are installing from a set of CDROMs,
DVDs or an NFS-mounted repository. If you want to install packages from multiple sources, you can
separate them by a semicolon inPKG_PATH.

After these preparations, installing a package is very easy:

pkg_add libreoffice
pkg_add ap24-php71- *

Note that any prerequisite packages needed to run the package in question will be installed, too,
assuming they are present where you install from.

Adding packages might install vulnerable packages. Thus you should runpkg_admin audit regularly,
especially after installing new packages, and verify that the vulnerabilities are acceptable for your
con�guration.

After you've installed packages, be sure to have/usr/pkg/bin and/usr/pkg/sbin in yourPATHso
you can actually start the just installed program.

4.1.3. Deinstalling packages

To deinstall a package, it does not matter whether it was installed from source code or from a binary
package. Thepkg_deletecommand does not know it anyway. To delete a package, you can just run
pkg_deletepackage-name . The package name can be given with or without version number. Wildcards
can also be used to deinstall a set of packages, for example* emacs* . Be sure to include them in quotes,
so that the shell does not expand them beforepkg_delete sees them.

The-r option is very powerful: it removes all the packages that require the package in question and then
removes the package itself. For example:

pkg_delete -r jpeg

will remove jpeg and all the packages that used it; this allows upgrading the jpeg package.

4.1.4. Getting information about installed packages

Thepkg_info shows information about installed packages or binary package �les.

4.1.5. Checking for security vulnerabilities in installed packages

The NetBSD Security-Of�cer and Packages Groups maintain a list of known security vulnerabilities to
packages which are (or have been) included in pkgsrc. The list is available from the NetBSD FTP site at
ftp://ftp.NetBSD.org/pub/pkgsrc/dist�les/vulnerabilities.

7

Chapter 4. Using pkgsrc

Throughpkg_admin fetch-pkg-vulnerabilities, this list can be downloaded automatically, and a
security audit of all packages installed on a system can takeplace.

There are two components to auditing. The �rst step,pkg_admin fetch-pkg-vulnerabilities, is for
downloading the list of vulnerabilities from the NetBSD FTPsite. The second step,pkg_admin audit,
checks to see if any of your installed packages are vulnerable. If a package is vulnerable, you will see
output similar to the following:

Package samba-2.0.9 has a local-root-shell vulnerability , see
http://www.samba.org/samba/whatsnew/macroexploit.ht ml

You may wish to have the vulnerabilities (ftp://ftp.NetBSD.org/pub/pkgsrc/dist�les/vulnerabilities) �le
downloaded daily so that it remains current. This may be doneby adding an appropriate entry to the root
users crontab(5) entry. For example the entry

Download vulnerabilities file
0 3 * * * /usr/pkg/sbin/pkg_admin fetch-pkg-vulnerabilities >/d ev/null 2>&1
Audit the installed packages and email results to root
9 3 * * * /usr/pkg/sbin/pkg_admin audit |mail -s "Installed packag e audit result" \

root >/dev/null 2>&1

will update the vulnerability list every day at 3AM, followed by an audit at 3:09AM. The result of the
audit are then emailed to root. On NetBSD this may be accomplished instead by adding the following
line to /etc/daily.conf :

fetch_pkg_vulnerabilities=YES

to fetch the vulnerability list from the daily security script. The system is set to audit the packages by
default but can be set explicitly, if desired (not required), by adding the following line to
/etc/security.conf :

check_pkg_vulnerabilities=YES

see daily.conf(5) and security.conf(5) for more details.

4.1.6. Finding if newer versions of your installed packages are in pkgsrc

Installpkgtools/lintpkgsrc and runlintpkgsrc with the “-i” argument to check if your packages are
up-to-date, e.g.

% lintpkgsrc -i
...
Version mismatch: 'tcsh' 6.09.00 vs 6.10.00

You can then usemake updateto update the package on your system and rebuild any dependencies.

8

Chapter 4. Using pkgsrc

4.1.7. Other administrative functions

Thepkg_admin executes various administrative functions on the package system.

4.2. Building packages from source
After obtaining pkgsrc, thepkgsrc directory now contains a set of packages, organized into categories.
You can browse the online index of packages, or runmake readmefrom thepkgsrc directory to build
localREADME.html �les for all packages, viewable with any web browser such aswww/lynx or
www/firefox .

The defaultpre�x for installed packages is/usr/pkg . If you wish to change this, you should do so by
settingLOCALBASEin mk.conf . You should not try to use multiple differentLOCALBASEde�nitions on
the same system (inside a chroot is an exception).

The rest of this chapter assumes that the package is already in pkgsrc. If it is not, see
Part II inThe pkgsrc guidefor instructions how to create your own packages.

4.2.1. Requirements

To build packages from source, you need a working C compiler.On NetBSD, you need to install the
“comp” and the “text” distribution sets. If you want to buildX11-related packages, the “xbase” and
“xcomp” distribution sets are required, too.

4.2.2. Fetching dist�les

The �rst step for building a package is downloading the dist�les (i.e. the unmodi�ed source). If they have
not yet been downloaded, pkgsrc will fetch them automatically.

If you have all �les that you need in thedistfiles directory, you don't need to connect. If the dist�les
are on CD-ROM, you can mount the CD-ROM on/cdrom and add:

DISTDIR=/cdrom/pkgsrc/distfiles

to yourmk.conf .

By default a list of distribution sites will be randomly intermixed to prevent huge load on servers which
holding popular packages (for example, SourceForge.net mirrors). Thus, every time when you need to
fetch yet another dist�le all the mirrors will be tried in new(random) order. You can turn this feature off
by settingMASTER_SORT_RANDOM=NO(for PKG_DEVELOPERs it's already disabled).

You can overwrite some of the major distribution sites to �t to sites that are close to your own. By setting
one or two variables you can modify the order in which the master sites are accessed.MASTER_SORT

contains a whitespace delimited list of domain suf�xes.MASTER_SORT_REGEXis even more �exible, it
contains a whitespace delimited list of regular expressions. It has higher priority thanMASTER_SORT.
Have a look atpkgsrc/mk/defaults/mk.conf to �nd some examples. This may save some of your
bandwidth and time.

You can change these settings either in your shell's environment, or, if you want to keep the settings, by
editing themk.conf �le, and adding the de�nitions there.

9

Chapter 4. Using pkgsrc

If a package depends on many other packages (such asmeta-pkgs/kde4), the build process may
alternate between periods of downloading source, and compiling. To ensure you have all the source
downloaded initially you can run the command:

% make fetch-list | sh

which will output and run a set of shell commands to fetch the necessary �les into thedistfiles

directory. You can also choose to download the �les manually.

4.2.3. How to build and install

Once the software has downloaded, any patches will be applied, then it will be compiled for you. This
may take some time depending on your computer, and how many other packages the software depends
on and their compile time.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

For example, type

% cd misc/figlet

% make

at the shell prompt to build the various components of the package.

The next stage is to actually install the newly compiled program onto your system. Do this by entering:

% make install

while you are still in the directory for whatever package youare installing.

Installing the package on your system may require you to be root. However, pkgsrc has ajust-in-time-su
feature, which allows you to only become root for the actual installation step.

That's it, the software should now be installed and setup foruse. You can now enter:

% make clean

to remove the compiled �les in the work directory, as you shouldn't need them any more. If other
packages were also added to your system (dependencies) to allow your program to compile, you can tidy
these up also with the command:

% make clean-depends

Taking the �glet utility as an example, we can install it on our system by building as shown in
Appendix B.

10

Chapter 4. Using pkgsrc

The program is installed under the default root of the packages tree -/usr/pkg . Should this not
conform to your tastes, set theLOCALBASEvariable in your environment, and it will use that value as the
root of your packages tree. So, to use/usr/local , setLOCALBASE=/usr/local in your environment.
Please note that you should use a directory which is dedicated to packages and not shared with other
programs (i.e., do not try and useLOCALBASE=/usr). Also, you should not try to add any of your own
�les or directories (such assrc/ , obj/ , or pkgsrc/) below theLOCALBASEtree. This is to prevent
possible con�icts between programs and other �les installed by the package system and whatever else
may have been installed there.

Some packages look inmk.conf to alter some con�guration options at build time. Have a lookat
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Environment
variables such asLOCALBASEcan be set inmk.conf to save having to remember to set them each time
you want to use pkgsrc.

Occasionally, people want to “look under the covers” to see what is going on when a package is building
or being installed. This may be for debugging purposes, or out of simple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command withPKG_DEBUG_LEVEL=2, then a huge amount of
information will be displayed. For example,

make patch PKG_DEBUG_LEVEL=2

will show all the commands that are invoked, up to and including the “patch” stage.

2. If you want to know the value of a certain make(1) de�nition, then theVARNAMEde�nition should be
used, in conjunction with the show-var target. e.g. to show the expansion of the make(1) variable
LOCALBASE:

% make show-var VARNAME=LOCALBASE
/usr/pkg
%

If you want to install a binary package that you've either created yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a remoteFTP server, you can use the "bin-install"
target. This target will install a binary package - if available - via pkg_add(1), else do amake package.
The list of remote FTP sites searched is kept in the variableBINPKG_SITES, which defaults to
ftp.NetBSD.org. Any �ags that should be added to pkg_add(1)can be put intoBIN_INSTALL_FLAGS.
Seepkgsrc/mk/defaults/mk.conf for more details.

A �nal word of warning: If you set up a system that has a non-standard setting forLOCALBASE, be sure
to set that before any packages are installed, as you cannot use several directories for the same purpose.
Doing so will result in pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with the defaultLOCALBASEof
/usr/pkg , and that you shouldnot install any if you use a non-standardLOCALBASE.

11

Chapter 5.

Con�guring pkgsrc

The whole pkgsrc system is con�gured in a single �le, usuallycalledmk.conf . In which directory
pkgsrc looks for that �le depends on the installation. On NetBSD, when you use make(1) from the base
system, it is in the directory/etc/ . In all other cases the default location is${PREFIX}/etc/ ,
depending on where you told the bootstrap program to installthe binary packages.

The format of the con�guration �le is that of the usual BSD-style Makefile s. The whole pkgsrc
con�guration is done by setting variables in this �le. Note that you can de�ne all kinds of variables, and
no special error checking (for example for spelling mistakes) takes place.

5.1. General con�guration
The following variables apply to all pkgsrc packages. A complete list of the variables that can be
con�gured by the user is available inmk/defaults/mk.conf , together with some comments that
describe each variable's intent.

• LOCALBASE: Where packages will be installed. The default is/usr/pkg . Do not mix binary packages
with differentLOCALBASEs!

• CROSSBASE: Where “cross” category packages will be installed. The default is
${LOCALBASE}/cross .

• X11BASE: Where X11 is installed on the system. The default is/usr/X11R7 .

• DISTDIR : Where to store the downloaded copies of the original sourcedistributions used for building
pkgsrc packages. The default is${PKGSRCDIR}/distfiles .

• PKG_DBDIR: Where the database about installed packages is stored. Thedefault is/usr/pkg/pkgdb .

• MASTER_SITE_OVERRIDE: If set, override the packages'MASTER_SITESwith this value.

• MASTER_SITE_BACKUP: Backup location(s) for distribution �les and patch �les ifnot found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults is
ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${DIST_SU BDIR}/ .

• BINPKG_SITES: List of sites carrying binary pkgs.rel andarch are replaced with OS release (“2.0”,
etc.) and architecture (“mipsel”, etc.).

• ACCEPTABLE_LICENSES: List of acceptable licenses. License names are case-sensitive. Whenever
you try to build a package whose license is not in this list, you will get an error message. If the license
condition is simple enough, the error message will include speci�c instructions on how to change this
variable.

12

Chapter 5. Con�guring pkgsrc

5.2. Variables affecting the build process

• PACKAGES: The top level directory for the binary packages. The default is
${PKGSRCDIR}/packages .

• WRKOBJDIR: The top level directory where, if de�ned, the separate working directories will get
created, and symbolically linked to from${WRKDIR} (see below). This is useful for building packages
on several architectures, then${PKGSRCDIR} can be NFS-mounted while${WRKOBJDIR} is local to
every architecture. (It should be noted thatPKGSRCDIRshould not be set by the user — it is an internal
de�nition which refers to the root of the pkgsrc tree. It is possible to have many pkgsrc tree instances.)

• LOCALPATCHES: Directory for local patches that aren't part of pkgsrc. SeeSection 11.3for more
information.

• PKGMAKECONF: Location of themk.conf �le used by a package's BSD-style Make�le. If this is not
set,MAKECONFis set to/dev/null to avoid picking up settings used by builds in/usr/src .

5.3. Variables affecting the installation process

• PKGSRC_KEEP_BIN_PKGSRC: By default, binary packages of built packages are preserved in
PACKAGES/All. Setting this variable to "no" prevents this.

Packages have to support installation into a subdirectory of WRKDIR. This allows a package to be built,
before the actual �lesystem is touched. DESTDIR support exists in two variations:

• Basic DESTDIR support means that the package installation and packaging is still run as root.

• Full DESTDIR support can run the complete build, installation and packaging as normal user. Root
privileges are only needed to add packages.

With basic DESTDIR support,make clean needs to be run as root.

Considering thefoo/bar package, DESTDIR full support can be tested using the following commands

$ id
uid=1000(myusername) gid=100(users) groups=100(users) ,0(wheel)
$ mkdir $HOME/packages
$ cd $PKGSRCDIR/foo/bar

Verify DESTDIRfull support, no root privileges should be needed

$ make stage-install

Create a package without root privileges

$ make PACKAGES=$HOME/packages package

For the following command, you must be able to gain root privileges using su(1)

13

Chapter 5. Con�guring pkgsrc

$ make PACKAGES=$HOME/packages install

Then, as a simple user

$ make clean

5.4. Selecting and con�guring the compiler

5.4.1. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may beoverridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER:

This is a list of values specifying the chain of compilers to invoke when building packages. Valid
values are:

• ccc : Compaq C Compilers (Tru64)

• ccache : compiler cache (chainable)

• clang : Clang C and Objective-C compiler

• distcc : distributed C/C++ (chainable)

• f2c : Fortran 77 to C compiler (chainable)

• icc : Intel C++ Compiler (Linux)

• ido : SGI IRIS Development Option cc (IRIX 5)

• gcc : GNU C/C++ Compiler

• hp: HP-UX C/aC++ compilers

• mipspro : Silicon Graphics, Inc. MIPSpro (n32/n64)

• mipspro-ucode : Silicon Graphics, Inc. MIPSpro (o32)

• sunpro : Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

• xlc : IBM's XL C/C++ compiler suite

The default is “gcc ”. You can useccache and/ordistcc with an appropriatePKGSRC_COMPILER

setting, e.g. “ccache gcc ”. This variable should always be terminated with a value fora real
compiler. Note that only one real compiler should be listed (e.g. “sunpro gcc ” is not allowed).

GCC_REQD:

This speci�es the minimum version of GCC to use when buildingpackages. If the system GCC
doesn't satisfy this requirement, then pkgsrc will build and install one of the GCC packages to use
instead.

14

Chapter 5. Con�guring pkgsrc

PYTHON_DEFAULT_VERSION:

Speci�es which version of python to use when several optionsare available.

PKGSRC_FORTRAN:

Speci�es the fortran compiler to use. The default isg95 , andgfortran is an alternative.

GFORTRAN_VERSION:

If PKGSRC_FORTRAN= gfortran is used, this option speci�es which version to use.

5.4.2. Additional �ags to the compiler (CFLAGS)

If you wish to set theCFLAGSvariable, please make sure to use the+= operator instead of the= operator:

CFLAGS+= -your -flags

UsingCFLAGS=(i.e. without the “+”) may lead to problems with packages that need to add their own
�ags. You may want to take a look at thedevel/cpuflags package if you're interested in optimization
speci�cally for the current CPU.

5.4.3. Additional �ags to the linker (LDFLAGS)

If you want to pass �ags to the linker, both in the con�gure step and the build step, you can do this in two
ways. Either setLDFLAGSor LIBS . The difference between the two is thatLIBS will be appended to the
command line, whileLDFLAGScome earlier.LDFLAGSis pre-loaded with rpath settings for ELF
machines depending on the setting ofUSE_IMAKEor the inclusion ofmk/x11.buildlink3.mk . As
with CFLAGS, if you do not wish to override these settings, use the+= operator:

LDFLAGS+= -your -linkerflags

5.5. Developer/advanced settings

• PKG_DEVELOPER: Run some sanity checks that package developers want:

• make sure patches apply with zero fuzz

• run check-shlibs to see that all binaries will �nd their shared libs.

• PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst making and installing
the package. The default value for this is 0, which will not display the commands as they are executed
(normal, default, quiet operation); the value 1 will display all shell commands before their invocation,
and the value 2 will display both the shell commands before their invocation, as well as their actual
execution progress withset -x.

15

Chapter 5. Con�guring pkgsrc

5.6. Selecting Build Options
Some packages have build time options, usually to select between different dependencies, enable
optional support for big dependencies or enable experimental features.

To see which options, if any, a package supports, and which options are mutually exclusive, runmake
show-options, for example:

The following options are supported by this package:
ssl Enable SSL support.

Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.

At most one of the following database options may be selected :
mysql Enable support for MySQL database.
pgsql Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

The following variables can be de�ned inmk.conf to select which options to enable for a package:
PKG_DEFAULT_OPTIONS, which can be used to select or disable options for all packages that support
them, andPKG_OPTIONS.pkgbase , which can be used to select or disable options speci�cally for
packagepkgbase . Options listed in these variables are selected, options preceded by “-” are disabled. A
few examples:

$ grep "PKG. * OPTION" mk.conf
PKG_DEFAULT_OPTIONS= -arts -dvdread -esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS.apache= suexec

It is important to note that options that were speci�cally suggested by the package maintainer must be
explicitly removed if you do not wish to include the option. If you are unsure you can view the current
state withmake show-options.

The following settings are consulted in the order given, andthe last setting that selects or disables an
option is used:

1. the default options as suggested by the package maintainer

2. the options implied by the settings of legacy variables (see below)

3. PKG_DEFAULT_OPTIONS

4. PKG_OPTIONS.pkgbase

For groups of mutually exclusive options, the last option selected is used, all others are automatically
disabled. If an option of the group is explicitly disabled, the previously selected option, if any, is used. It
is an error if no option from a required group of options is selected, and building the package will fail.

Before the options framework was introduced, build optionswere selected by setting a variable (often
namedUSE_FOO) in mk.conf for each option. To ease transition to the options frameworkfor the user,
these legacy variables are converted to the appropriate options setting (PKG_OPTIONS.pkgbase)
automatically. A warning is issued to prompt the user to updatemk.conf to use the options framework
directly. Support for the legacy variables will be removed eventually.

16

Chapter 6.

Creating binary packages

6.1. Building a single binary package
Once you have built and installed a package, you can create abinary packagewhich can be installed on
another system with pkg_add(1). This saves having to build the same package on a group of hosts and
wasting CPU time. It also provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc, and runmake package:

$ cd misc/figlet
$ make package

This will build and install your package (if not already done), and then build a binary package from what
was installed. You can then use thepkg_* tools to manipulate it. Binary packages are created by default
in /usr/pkgsrc/packages , in the form of a gzipped tar �le. SeeSection B.2for a continuation of the
abovemisc/figlet example.

SeeChapter 21for information on how to submit such a binary package.

6.2. Settings for creation of binary packages
SeeSection 17.17.

17

Chapter 7.

Creating binary packages for
everything in pkgsrc (bulk
builds)

For a number of reasons you may want to build binary packages for a large selected set of packages in
pkgsrc or even for all pkgsrc packages. For instance, when you have multiple machines that should run
the same software, it is wasted time if they all build their packages themselves from source. Or you may
want to build a list of packages you want and check them beforedeploying onto production system.
There is a way of getting a set of binary packages: The bulk build system, or pbulk ("p" stands for
"parallel"). This chapter describes how to set it up.

7.1. Preparations
First of all, you have to decide whether you build all packages or a limited set of them. Full bulk builds
usually consume a lot more resources, both space and time, than builds for some practical sets of
packages. There exists a number of particularly heavy packages that are not actually interesting to a wide
audience. For a limited bulk builds you need to make a list of packages you want to build. Note that all
their dependencies will be built, so you don't need to track them manually.

During bulk builds various packages are installed and deinstalled in /usr/pkg (or whateverLOCALBASE

is), so make sure that you don't need any package during the builds. Essentially, you should provide a
fresh system, either a chroot environment or something evenmore restrictive, depending on what the
operating system provides, or dedicate the whole physical machine. As a useful side effect this makes
sure that bulk builds cannot break anything in your system. There have been numerous cases where
certain packages tried to install �les outside theLOCALBASEor wanted to edit some �les in/etc .

7.2. Running a pbulk-style bulk build
Running a pbulk-style bulk build works roughly as follows:

• First, build the pbulk infrastructure in a fresh pkgsrc location.

• Then, build each of the packages from a clean installation directory using the infrastructure.

7.2.1. Con�guration

To simplify con�guration, we provide the helper scriptmk/pbulk/pbulk.sh .

18

Chapter 7. Creating binary packages for everything in pkgsrc (bulk builds)

In order to use it, prepare a clear system (real one, chroot environment, jail, zone, virtual machine).
Con�gure network access to fetch distribution �les. Createa user with name "pbulk".

Fetch and extract pkgsrc. Use a command like one of these:

(cd /usr && ftp -o - http://ftp.NetBSD.org/pub/pkgsrc/cur rent/pkgsrc.tar.gz | tar -zxf-)
(cd /usr && fetch -o - http://ftp.NetBSD.org/pub/pkgsrc/c urrent/pkgsrc.tar.gz | tar -zxf-)
(cd /usr && cvs -Q -z3 -d anoncvs@anoncvs.NetBSD.org:/cvsr oot get -P pkgsrc)

Or any other way that �ts (e.g., curl, wget).

Deploy and con�gure pbulk tools, e.g.:

sh pbulk.sh -n # use native make, no bootstrap kit needed (for use on NetBSD)
sh pbulk.sh -n -c mk.conf.frag # native, apply settings from given mk.conf fragment
sh pbulk.sh -nlc mk.conf.frag # native, apply settings, con figure for limited build

Note: mk.conf.frag is a fragment of mk.conf that contains settings you want to apply to packages
you build. For instance,

PKG_DEVELOPER= yes # perform more checks
X11_TYPE= modular # use pkgsrc X11
SKIP_LICENSE_CHECK= yes # accept all licences (useful

when building all packages)

If con�gured for limited list, replace the list in/usr/pbulk/etc/pbulk.list with your list of
packages, one per line without empty lines or comments. E.g.:

www/firefox
mail/thunderbird
misc/libreoffice4

At this point you can also review con�guration in/usr/pbulk/etc and make �nal amendments, if
wanted.

Start it:

/usr/pbulk/bin/bulkbuild

After it �nishes, you'll have/mnt �lled with distribution �les, binary packages, and reports, plain text
summary in/mnt/bulklog/meta/report.txt

Note: The pbulk.sh script does not cover all possible use cases. While being ready to run, it serves
as a good starting point to understand and build more complex setups. The script is kept small
enough for better understanding.

Note: The pbulk.sh script supports running unprivileged bulk build and helps con�guring distributed
bulk builds.

19

Chapter 7. Creating binary packages for everything in pkgsrc (bulk builds)

7.3. Requirements of a full bulk build
A complete bulk build requires lots of disk space. Some of thedisk space can be read-only, some other
must be writable. Some can be on remote �lesystems (such as NFS) and some should be local. Some can
be temporary �lesystems, others must survive a sudden reboot.

• 40 GB for the dist�les (read-write, remote, temporary)

• 30 GB for the binary packages (read-write, remote, permanent)

• 1 GB for the pkgsrc tree (read-only, remote, permanent)

• 5 GB forLOCALBASE(read-write, local, temporary)

• 10 GB for the log �les (read-write, remote, permanent)

• 5 GB for temporary �les (read-write, local, temporary)

7.4. Creating a multiple CD-ROM packages collection
After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set of the resulting
binary packages to assist in installing packages on other machines. Thepkgtools/cdpack package
provides a simple tool for creating the ISO 9660 images.cdpack arranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a given package on the same CD as that package.

7.4.1. Example of cdpack

Complete documentation for cdpack is found in the cdpack(1)man page. The following short example
assumes that the binary packages are left in/usr/pkgsrc/packages/All and that suf�cient disk
space exists in/u2 to hold the ISO 9660 images.

mkdir /u2/images
pkg_add /usr/pkgsrc/packages/All/cdpack
cdpack /usr/pkgsrc/packages/All /u2/images

If you wish to include a common set of �les (COPYRIGHT, README, etc.) on each CD in the collection,
then you need to create a directory which contains these �les. e.g.

mkdir /tmp/common

echo "This is a README" > /tmp/common/README
echo "Another file" > /tmp/common/COPYING
mkdir /tmp/common/bin
echo "#!/bin/sh" > /tmp/common/bin/myscript
echo "echo Hello world" >> /tmp/common/bin/myscript
chmod 755 /tmp/common/bin/myscript

Now create the images:

cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/imag es

Each image will containREADME, COPYING, andbin/myscript in their root directories.

20

Chapter 8.

Directory layout of the installed
�les

The �les that are installed by pkgsrc are organized in a way that is similar to what you �nd in the/usr

directory of the base system. But some details are different. This is because pkgsrc initially came from
FreeBSD and had adopted its �le system hierarchy. Later it was largely in�uenced by NetBSD. But no
matter which operating system you are using pkgsrc with, youcan expect the same layout for pkgsrc.

There are mainly four root directories for pkgsrc, which areall con�gurable in the
bootstrap/bootstrap script. When pkgsrc has been installed as root, the default locations are:

LOCALBASE= /usr/pkg
PKG_SYSCONFBASE= /usr/pkg/etc
VARBASE= /var
PKG_DBDIR= /usr/pkg/pkgdb

In unprivileged mode (when pkgsrc has been installed as any other user), the default locations are:

LOCALBASE= ${HOME}/pkg
PKG_SYSCONFBASE= ${HOME}/pkg/etc
VARBASE= ${HOME}/pkg/var
PKG_DBDIR= ${HOME}/pkg/pkgdb

What these four directories are for, and what they look like is explained below.

• LOCALBASEcorresponds to the/usr directory in the base system. It is the “main” directory where the
�les are installed and contains the well-known subdirectories likebin , include , lib , share and
sbin .

• VARBASEcorresponds to/var in the base system. Some programs (especially games, network
daemons) need write access to it during normal operation.

• PKG_SYSCONFDIRcorresponds to/etc in the base system. It contains con�guration �les of the
packages, as well as pkgsrc'smk.conf itself.

8.1. File system layout in ${LOCALBASE}

The following directories exist in a typical pkgsrc installation in${LOCALBASE}.

bin

Contains executable programs that are intended to be directly used by the end user.

21

Chapter 8. Directory layout of the installed �les

emul

Contains �les for the emulation layers of various other operating systems, especially for NetBSD.

etc (the usual location of${PKG_SYSCONFDIR})

Contains the con�guration �les.

include

Contains headers for the C and C++ programming languages.

info

Contains GNU info �les of various packages.

lib

Contains shared and static libraries.

libdata

Contains data �les that don't change after installation. Other data �les belong into${VARBASE}.

libexec

Contains programs that are not intended to be used by end users, such as helper programs or
network daemons.

libexec/cgi-bin

Contains programs that are intended to be executed as CGI scripts by a web server.

man (the usual value of${PKGMANDIR})

Contains brief documentation in form of manual pages.

sbin

Contains programs that are intended to be used only by the super-user.

share

Contains platform-independent data �les that don't changeafter installation.

share/doc

Contains documentation �les provided by the packages.

share/examples

Contains example �les provided by the packages. Among others, the original con�guration �les are
saved here and copied to${PKG_SYSCONFDIR}during installation.

share/examples/rc.d

Contains the original �les for rc.d scripts.

22

Chapter 8. Directory layout of the installed �les

var (the usual location of${VARBASE})

Contains �les that may be modi�ed after installation.

8.2. File system layout in ${VARBASE}

db/pkg (the usual location of${PKG_DBDIR})

Contains information about the currently installed packages.

games

Contains highscore �les.

log

Contains log �les.

run

Contains informational �les about daemons that are currently running.

23

Chapter 9.

Frequently Asked Questions

This section contains hints, tips & tricks on special thingsin pkgsrc that we didn't �nd a better place for
in the previous chapters, and it contains items for both pkgsrc users and developers.

9.1. Are there any mailing lists for pkg-related discussion ?
The following mailing lists may be of interest to pkgsrc users:

• pkgsrc-users (http://www.NetBSD.org/mailinglists/index.html#pkgsrc-users): This is a general
purpose list for most issues regarding pkgsrc, regardless of platform, e.g. soliciting user help for
pkgsrc con�guration, unexpected build failures, using particular packages, upgrading pkgsrc
installations, questions regarding the pkgsrc release branches, etc. General announcements or
proposals for changes that impact the pkgsrc user community, e.g. major infrastructure changes, new
features, package removals, etc., may also be posted.

• pkgsrc-bulk (http://www.NetBSD.org/mailinglists/index.html#pkgsrc-bulk): A list where the results of
pkgsrc bulk builds are sent and discussed.

• pkgsrc-changes (http://www.NetBSD.org/mailinglists/index.html#pkgsrc-changes): This list is for
those who are interested in getting a commit message for every change committed to pkgsrc. It is also
available in digest form, meaning one daily message containing all commit messages for changes to
the package source tree in that 24 hour period.

To subscribe, do:

% echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from http://mail-index.NetBSD.org/.

9.2. Utilities for package management (pkgtools)
The directorypkgsrc/pkgtools contains a number of useful utilities for both users and developers of
pkgsrc. This section attempts only to make the reader aware of some of the utilities and when they might
be useful, and not to duplicate the documentation that comeswith each package.

Utilities used by pkgsrc (automatically installed when needed):

• pkgtools/x11-links : Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

• pkgtools/digest : Calculates various kinds of checksums (including SHA3).

24

Chapter 9. Frequently Asked Questions

• pkgtools/libnbcompat : Compatibility library for pkgsrc tools.

• pkgtools/mtree : Installed on non-BSD systems due to lack of native mtree.

• pkgtools/pkg_install : Up-to-date replacement for/usr/sbin/pkg_install , or for use on
operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

• pkgtools/pkg_tarup : Create a binary package from an already-installed package. Used bymake
replaceto save the old package.

• pkgtools/dfdisk : Adds extra functionality to pkgsrc, allowing it to fetch dist�les from multiple
locations. It currently supports the following methods: multiple CD-ROMs and network FTP/HTTP
connections.

• devel/cpuflags : Determine the best compiler �ags to optimise code for your current CPU and
compiler.

Utilities for keeping track of installed packages, being upto date, etc:

• pkgtools/pkgin : A package update tool similar to apt(1). Download, install, and upgrade binary
packages easily.

• pkgtools/pkg_chk : Reports on packages whose installed versions do not match the latest pkgsrc
entries.

• pkgtools/pkgdep : Makes dependency graphs of packages, to aid in choosing a strategy for
updating.

• pkgtools/pkgdepgraph : Makes graphs from the output ofpkgtools/pkgdep (uses graphviz).

• pkgtools/pkglint : The pkglint(1) program checks a pkgsrc entry for errors.

• pkgtools/lintpkgsrc : The lintpkgsrc(1) program does various checks on the complete pkgsrc
system.

• pkgtools/pkgsurvey : Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

• pkgtools/pkgdiff : Automate making and maintaining patches for a package (includes pkgdiff,
pkgvi, mkpatches, etc.).

• pkgtools/url2pkg : Aids in converting to pkgsrc.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

• pkgtools/pkg_comp : Build packages in a chrooted area.

• pkgtools/libkver : Spoof kernel version for chrooted cross builds.

9.3. How to use pkgsrc as non-root
To install packages from source as a non-root user, downloadpkgsrc as described inChapter 2, cd into
that directory and run the command./bootstrap/bootstrap --unprivileged.

25

Chapter 9. Frequently Asked Questions

This will install the binary part of pkgsrc to~/pkg and put the pkgsrc con�gurationmk.conf into
~/pkg/etc .

For more details, seemk/unprivileged.mk .

9.4. How to resume transfers when fetching dist�les?
By default, resuming transfers in pkgsrc is disabled, but you can enable this feature by adding the option
PKG_RESUME_TRANSFERS=YESinto mk.conf . If, during a fetch step, an incomplete dist�le is found,
pkgsrc will try to resume it.

You can also use a different program than the platform default program by changing theFETCH_USING

variable. You can specify the program by using of ftp, fetch,wget or curl. Alternatively, fetching can be
disabled by using the value manual. A value of custom disables the system defaults and dependency
tracking for the fetch program. In that case you have to provideFETCH_CMD, FETCH_BEFORE_ARGS,
FETCH_RESUME_ARGS, FETCH_OUTPUT_ARGS, FETCH_AFTER_ARGS.

For example, if you want to usewget to download, you'll have to use something like:

FETCH_USING= wget

9.5. How can I install/use modular X.org from pkgsrc?
If you want to use modular X.org from pkgsrc instead of your system's own X11 (/usr/X11R6 ,
/usr/openwin , ...) you will have to add the following line intomk.conf :

X11_TYPE=modular

9.6. How to fetch �les from behind a �rewall
If you are sitting behind a �rewall which does not allow direct connections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. This is done using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdahl.com” is one of the �rewalls, and it uses
port 80 as the proxy port number. So the proxy environment variables are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

9.7. How to fetch �les from HTTPS sites
Some fetch tools are not prepared to support HTTPS by default(for example, the one in NetBSD 6.0), or
the one installed by the pkgsrc bootstrap (to avoid an openssl dependency that low in the dependency
graph).

Usually you won't notice, because distribution �les are mirrored weekly to “ftp.NetBSD.org”, but that
might not be often enough if you are following pkgsrc-current. In that case, setFETCH_USINGin your

26

Chapter 9. Frequently Asked Questions

mk.conf �le to “curl” or “wget”, which are both compiled with HTTPS support by default. Of course,
these tools need to be installed before you can use them this way.

9.8. How do I tell make fetch to do passive FTP?
This depends on which utility is used to retrieve dist�les. From bsd.pkg.mk , FETCH_CMDis assigned
the �rst available command from the following list:

• ${LOCALBASE}/bin/ftp

• /usr/bin/ftp

On a default NetBSD installation, this will be/usr/bin/ftp , which automatically tries passive
connections �rst, and falls back to active connections if the server refuses to do passive. For the other
tools, add the following to yourmk.conf �le: PASSIVE_FETCH=1.

Having that option present will prevent/usr/bin/ftp from falling back to active transfers.

9.9. How to fetch all dist�les at once
You would like to download all the dist�les in a single batch from work or university, where you can't
run amake fetch. There is an archive of dist�les on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/dist�les/), but downloading the entire directory may not be appropriate.

The answer here is to do amake fetch-list in /usr/pkgsrc or one of its subdirectories, carry the
resulting list to your machine at work/school and use it there. If you don't have a NetBSD-compatible
ftp(1) (like tnftp) at work, don't forget to setFETCH_CMDto something that fetches a URL:

At home:

% cd /usr/pkgsrc
% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles > /tmp/fetch.sh

% scp /tmp/fetch.sh work:/tmp

At work:

% sh /tmp/fetch.sh

then tar up/tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to getall dist�les (even ones that aren't for your
machine architecture), you can do so by using the above-mentionedmake fetch-listapproach, or fetch
the dist�les directly by running:

% make mirror-distfiles

If you even decide to ignoreNO_{SRC,BIN}_ON_{FTP,CDROM} , then you can get everything by
running:

% make fetch NO_SKIP=yes

27

Chapter 9. Frequently Asked Questions

9.10. What does “Don't know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling thepkgtools/pkg_install package, you get the error from make that it doesn't
know how to make/usr/share/tmac/tmac.andoc ? This indicates that you don't have installed the
“text” set (nroff, ...) from the NetBSD base distribution onyour machine. It is recommended to do that to
format man pages.

In the case of thepkgtools/pkg_install package, you can get away with settingNOMAN=YESeither
in the environment or inmk.conf .

9.11. What does “Could not �nd bsd.own.mk” mean?
You didn't install the compiler set,comp.tgz , when you installed your NetBSD machine. Please get and
install it, by extracting it in/ :

cd /
tar --unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that correspondsto your release (determine via
uname -r).

9.12. Using 'sudo' with pkgsrc
When installing packages as non-root user and using the just-in-time su(1) feature of pkgsrc, it can
become annoying to type in the root password for each required package installed. To avoid this, the
sudo package can be used, which does password caching over a limited time. To use it, install sudo
(either as binary package or fromsecurity/sudo) and then put the following into yourmk.conf ,
somewhereafter the de�nition of theLOCALBASEvariable:

.if exists(${LOCALBASE}/bin/sudo)
SU_CMD= ${LOCALBASE}/bin/sudo /bin/sh -c
.endif

9.13. How do I change the location of con�guration �les?
As the system administrator, you can choose where con�guration �les are installed. The default settings
make all these �les go into${PREFIX}/etc or some of its subdirectories; this may be suboptimal
depending on your expectations (e.g., a read-only, NFS-exportedPREFIX with a need of per-machine
con�guration of the provided packages).

In order to change the defaults, you can modify thePKG_SYSCONFBASEvariable (inmk.conf) to point
to your preferred con�guration directory; some common examples include/etc or /etc/pkg .

Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR.${PKG_SYSCONFVAR}variable.PKG_SYSCONFVAR's value usually matches the
name of the package you would like to modify, that is, the contents ofPKGBASE.

28

Chapter 9. Frequently Asked Questions

Note that after changing these settings, you must rebuild and reinstall any affected packages.

9.14. Automated security checks
Please be aware that there can often be bugs in third-party software, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In an effort to lessen the exposure, the NetBSD
packages team maintains a database of known-exploits to packages which have at one time been
included in pkgsrc. The database can be downloaded automatically, and a security audit of all packages
installed on a system can take place. To do this, refer to the following two tools (installed as part of the
pkgtools/pkg_install package):

1. pkg_admin fetch-pkg-vulnerabilities, an easy way to download a list of the security vulnerabilities
information. This list is kept up to date by the pkgsrc security team, and is distributed from the
NetBSD ftp server:

ftp://ftp.NetBSD.org/pkgsrc/dist�les/pkg-vulnerabilities

2. pkg_admin audit, an easy way to audit the current machine, checking each known vulnerability. If
a vulnerable package is installed, it will be shown by outputto stdout, including a description of the
type of vulnerability, and a URL containing more information.

Use of these tools is strongly recommended! SeeSection 4.1.5for instructions on how to automate
checking and reporting.

If this database is installed, pkgsrc builds will use it to perform a security check before building any
package.

9.15. Why do some packages ignore my CFLAGS?
When you add your own preferences to theCFLAGSvariable in yourmk.conf , these �ags are passed in
environment variables to the./configure scripts and to make(1). Some package authors ignore the
CFLAGSfrom the environment variable by overriding them in theMakefile s of their package.

Currently there is no solution to this problem. If you reallyneed the package to use yourCFLAGSyou
should runmake patchin the package directory and then inspect anyMakefile andMakefile.in for
whether they de�neCFLAGSexplicitly. Usually you can remove these lines. But be awarethat some
“smart” programmers write so bad code that it only works for the speci�c combination ofCFLAGSthey
have chosen.

9.16. A package does not build. What shall I do?

1. Make sure that your copy of pkgsrc is consistent. A case that occurs often is that people only update
pkgsrc in parts, because of performance reasons. Since pkgsrc is one large system, not a collection
of many small systems, there are sometimes changes that onlywork when the whole pkgsrc tree is
updated.

2. Make sure that you don't have any CVS con�icts. Search for “<<<<<<” or “>>>>>>” in all your
pkgsrc �les.

29

Chapter 9. Frequently Asked Questions

3. Make sure that you don't have old copies of the packages extracted. Runmake clean clean-depends
to verify this.

4. If you are a package developer who wants to invest some work, have a look atChapter 19.

5. If the problem still exists, write a mail to thepkgsrc-users mailing list.

9.17. What does “Make�le appears to contain unresolved
cvs/rcs/??? merge con�icts” mean?

You have modi�ed a �le from pkgsrc, and someone else has modi�ed that same �le afterwards in the
CVS repository. Both changes are in the same region of the �le, so when you updated pkgsrc, thecvs

command marked the con�icting changes in the �le. Because ofthese markers, the �le is no longer a
valid Makefile .

Have a look at that �le, and if you don't need your local changes anymore, you can remove that �le and
runcvs -q update -dPin that directory to download the current version.

30

II. The pkgsrc developer's guide
This part of the book deals with creating and modifying packages. It starts with a “HOWTO”-like guide
on creating a new package. The remaining chapters are more like a reference manual for pkgsrc.

Chapter 10.

Creating a new pkgsrc package
from scratch

When you �nd a package that is not yet in pkgsrc, you most likely have a URL from where you can
download the source code. Starting with this URL, creating apackage involves only a few steps.

1. First, install the packagespkgtools/url2pkg andpkgtools/pkglint .

2. Then, choose one of the top-level directories as the category in which you want to place your
package. You can also create a directory of your own (maybe called local). In that category
directory, create another directory for your package and change into it.

3. Run the programurl2pkg, which will ask you for a URL. Enter the URL of the distribution �le (in
most cases a.tar.gz �le) and watch how the basic ingredients of your package are created
automatically. The distribution �le is extracted automatically to �ll in some details in theMakefile

that would otherwise have to be done manually.

4. Examine the extracted �les to determine the dependenciesof your package. Ideally, this is
mentioned in someREADME�le, but things may differ. For each of these dependencies, look where it
exists in pkgsrc, and if there is a �le calledbuildlink3.mk in that directory, add a line to your
packageMakefile which includes that �le just before the last line. If thebuildlink3.mk �le does
not exist, it must be created �rst. Thebuildlink3.mk �le makes sure that the package's include
�les and libraries are provided.

If you just need binaries from a package, add aDEPENDSline to the Make�le, which speci�es the
version of the dependency and where it can be found in pkgsrc.This line should be placed in the
third paragraph. If the dependency is only needed for building the package, but not when using it,
useBUILD_DEPENDSinstead ofDEPENDS. Your package may then look like this:

[...]

BUILD_DEPENDS+= libxslt-[0-9] * :../../textproc/libxslt
DEPENDS+= screen-[0-9] * :../../misc/screen
DEPENDS+= screen>=4.0:../../misc/screen

[...]

.include "../../ category / package /buildlink3.mk"

.include "../../devel/glib2/buildlink3.mk"

.include "../../mk/bsd.pkg.mk"

5. Runpkglint to see what things still need to be done to make your package a “good” one. If you
don't know what pkglint's warnings want to tell you, trypkglint --explain or pkglint -e, which
outputs additional explanations.

32

Chapter 10. Creating a new pkgsrc package from scratch

6. In many cases the package is not yet ready to build. You can �nd instructions for the most common
cases in the next section,Section 10.1. After you have followed the instructions over there, you can
hopefully continue here.

7. Runbmake cleanto clean the working directory from the extracted �les. Besides these �les, a lot of
cache �les and other system information has been saved in theworking directory, which may
become wrong after you edited theMakefile .

8. Now, runbmake to build the package. For the various things that can go wrongin this phase,
consultChapter 19.

9. When the package builds �ne, the next step is to install thepackage. Runbmake install and hope
that everything works.

10. Up to now, the �lePLIST , which contains a list of the �les that are installed by the package, is
nearly empty. Runbmake print-PLIST >PLIST to generate a probably correct list. Check the �le
using your preferred text editor to see if the list of �les looks plausible.

11. Runpkglint again to see if the generatedPLIST contains garbage or not.

12. When you ranbmake install, the package has been registered in the database of installed �les, but
with an empty list of �les. To �x this, runbmake deinstallandbmake install again. Now the
package is registered with the list of �les fromPLIST .

13. Runbmake packageto create a binary package from the set of installed �les.

10.1. Common types of packages

10.1.1. Perl modules

Simple Perl modules are handled automatically byurl2pkg, including dependencies.

10.1.2. Python modules and programs

Python modules and programs packages are easily created using a set of prede�ned variables.

If some Python versions are not supported by the software, set thePYTHON_VERSIONS_INCOMPATIBLE

variable to the Python versions that are not supported, e.g.

PYTHON_VERSIONS_INCOMPATIBLE= 27

If the packaged software is a Python module, include one of../../lang/python/egg.mk ,
../../lang/python/distutils.mk , or ../../lang/python/extension.mk .

Most Python packages use either “distutils” or easy-setup/setuptools (“eggs”). if the packaged software
is using setuptools, you only need to include “../../lang/python/egg.mk ”. Otherwise, if the
software uses “distutils”, include “../../lang/python/distutils.mk ”. so pkgsrc will use this
framework. “distutils” uses a script calledsetup.py , if the “distutils” driver is not calledsetup.py , set
thePYSETUPvariable to the name of the script.

33

Chapter 10. Creating a new pkgsrc package from scratch

Either way, the package directory should be called “py-software” andPKGNAMEshould be set to
“${PYPKGPREFIX}-${DISTNAME}”, e.g.

DISTNAME= foopymodule-1.2.10
PKGNAME= ${PYPKGPREFIX}-${DISTNAME}

If it is an application, include “../../lang/python/application.mk ”. In order to correctly set the
path to the Python interpreter, use theREPLACE_PYTHONvariable and set it to the list of �les (paths
relative toWRKSRC) that must be corrected. For example:

REPLACE_PYTHON= * .py

Some Python modules have separate distributions for Python-2.x and Python-3.x support. In pkgsrc this
is handled by theversioned_dependencies.mk �le. Set PYTHON_VERSIONED_DEPENDENCIESto
the list of packages that should be depended upon and include
“ ../../lang/python/versioned_dependencies.mk ”, then the pkgsrc infrastructure will depend
on the appropriate package version. For example:

PYTHON_VERSIONED_DEPENDENCIES=dialog

Look insideversioned_dependencies.mk for a list of supported packages.

10.2. Examples

10.2.1. How the www/nvu package came into pkgsrc

10.2.1.1. The initial package

Looking at the �lepkgsrc/doc/TODO , I saw that the “nvu” package has not yet been imported into
pkgsrc. As the description says it has to do with the web, the obvious choice for the category is “www”.

$ mkdir www/nvu
$ cd www/nvu

The web site says that the sources are available as a tar �le, so I fed that URL to theurl2pkg program:

$ url2pkg http://cvs.nvu.com/download/nvu-1.0-sources. tar.bz2

My editor popped up, and I added aPKGNAMEline below theDISTNAMEline, as the package name should
not have the word “sources” in it. I also �lled in theMAINTAINER, HOMEPAGEandCOMMENT�elds. Then
the packageMakefile looked like that:

$NetBSD $
#

DISTNAME= nvu-1.0-sources

34

Chapter 10. Creating a new pkgsrc package from scratch

PKGNAME= nvu-1.0
CATEGORIES= www
MASTER_SITES= http://cvs.nvu.com/download/
EXTRACT_SUFX= .tar.bz2

MAINTAINER= rillig@NetBSD.org
HOMEPAGE= http://cvs.nvu.com/
COMMENT= Web Authoring System

url2pkg-marker (please do not remove this line.)
.include "../../mk/bsd.pkg.mk"

On the �rst line of output above, an arti�cial space has been added between NetBSD and $, this is a
workaround to prevent CVS expanding to the �lename of the guide.

Then, I quit the editor and watched pkgsrc downloading a large source archive:

url2pkg> Running "make makesum" ...
=> Required installed package digest>=20010302: digest-2 0060826 found
=> Fetching nvu-1.0-sources.tar.bz2
Requesting http://cvs.nvu.com/download/nvu-1.0-sourc es.tar.bz2
100% | ************************************* | 28992 KB 150.77 KB/s00:00 ETA
29687976 bytes retrieved in 03:12 (150.77 KB/s)
url2pkg> Running "make extract" ...
=> Required installed package digest>=20010302: digest-2 0060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2
=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2
work.bacc -> /tmp/roland/pkgsrc/www/nvu/work.bacc
===> Installing dependencies for nvu-1.0
===> Overriding tools for nvu-1.0
===> Extracting for nvu-1.0
url2pkg> Adjusting the Makefile.

Remember to correct CATEGORIES, HOMEPAGE, COMMENT, and DESCR when you're done!

Good luck! (See pkgsrc/doc/pkgsrc.txt for some more help :-)

10.2.1.2. Fixing all kinds of problems to make the package wo rk

Now that the package has been extracted, let's see what's inside it. The package has aREADME.txt , but
that only says something about mozilla, so it's probably useless for seeing what dependencies this
package has. But since there is a GNU con�gure script in the package, let's hope that it will complain
about everything it needs.

$ bmake
=> Required installed package digest>=20010302: digest-2 0060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2
=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2
===> Patching for nvu-1.0
===> Creating toolchain wrappers for nvu-1.0
===> Configuring for nvu-1.0
[...]

35

Chapter 10. Creating a new pkgsrc package from scratch

configure: error: Perl 5.004 or higher is required.
[...]
WARNING: Please add USE_TOOLS+=perl to the package Makefil e.
[...]

That worked quite well. So I opened the package Make�le in my editor, and since it already has a
USE_TOOLSline, I just appended “perl” to it. Since the dependencies ofthe package have changed now,
and since a perl wrapper is automatically installed in the “tools” phase, I need to build the package from
scratch.

$ bmake clean
===> Cleaning for nvu-1.0
$ bmake
[...]

*** /tmp/roland/pkgsrc/www/nvu/work.bacc/.tools/bin/mak e is not \
GNU Make. You will not be able to build Mozilla without GNU Mak e.
[...]

So I added “gmake” to theUSE_TOOLSline and tried again (from scratch).

[...]
checking for GTK - version >= 1.2.0... no

*** Could not run GTK test program, checking why...
[...]

Now to the other dependencies. The �rst question is: Where isthe GTK package hidden in pkgsrc?

$ echo ../../ * /gtk *
[many packages ...]
$ echo ../../ * /gtk
../../x11/gtk
$ echo ../../ * /gtk2
../../x11/gtk2
$ echo ../../ * /gtk2/bui *
../../x11/gtk2/buildlink3.mk

The �rst try was de�nitely too broad. The second one had exactly one result, which is very good. But
there is one pitfall with GNOME packages. Before GNOME 2 had been released, there were already
many GNOME 1 packages in pkgsrc. To be able to continue to use these packages, the GNOME 2
packages were imported as separate packages, and their names usually have a “2” appended. So I
checked whether this was the case here, and indeed it was.

Since the GTK2 package has abuildlink3.mk �le, adding the dependency is very easy. I just inserted
an .include line before the last line of the packageMakefile , so that it now looks like this:

[...]
.include "../../x11/gtk2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk

After anotherbmake clean && bmake, the answer was:

[...]
checking for gtk-config... /home/roland/pkg/bin/gtk-co nfig

36

Chapter 10. Creating a new pkgsrc package from scratch

checking for GTK - version >= 1.2.0... no

*** Could not run GTK test program, checking why...

*** The test program failed to compile or link. See the file confi g.log for the

*** exact error that occured. This usually means GTK was incorre ctly installed

*** or that you have moved GTK since it was installed. In the latte r case, you

*** may want to edit the gtk-config script: /home/roland/pkg/b in/gtk-config
configure: error: Test for GTK failed.
[...]

In this particular case, the assumption that “every packageprefers GNOME 2” had been wrong. The �rst
of the lines above told me that this package really wanted to have the GNOME 1 version of GTK. If the
package had looked for GTK2, it would have looked forpkg-con�g instead ofgtk-con�g . So I changed
thex11/gtk2 to x11/gtk in the packageMakefile , and tried again.

[...]
cc -o xpidl.o -c -DOSTYPE=\"NetBSD3\" -DOSARCH=\"NetBSD\ " [...]
In file included from xpidl.c:42:
xpidl.h:53:24: libIDL/IDL.h: No such file or directory
In file included from xpidl.c:42:
xpidl.h:132: error: parse error before "IDL_ns"
[...]

The package still does not �nd all of its dependencies. Now the question is: Which package provides the
libIDL/IDL.h header �le?

$ echo ../../ * / * idl *
../../devel/py-idle ../../wip/idled ../../x11/acidlau nch
$ echo ../../ * / * IDL *
../../net/libIDL

Let's take the one from the second try. So I included the../../net/libIDL/buildlink3.mk �le and
tried again. But the error didn't change. After digging through some of the code, I concluded that the
build process of the package was broken and couldn't have ever worked, but since the Mozilla source tree
is quite large, I didn't want to �x it. So I added the followingto the packageMakefile and tried again:

CPPFLAGS+= -I${BUILDLINK_PREFIX.libIDL}/include/libI DL-2.0
BUILDLINK_TRANSFORM+= l:IDL:IDL-2

The latter line is needed because the package expects the library libIDL.so , but onlylibIDL-2.so is
available. So I told the compiler wrapper to rewrite that on the �y.

The next problem was related to a recent change of the FreeType interface. I looked up in
www/seamonkey which patch �les were relevant for this issue and copied themto thepatches

directory. Then I retried, �xed the patches so that they applied cleanly and retried again. This time,
everything worked.

10.2.1.3. Installing the package

$ bmake CHECK_FILES=no install
[...]
$ bmake print-PLIST >PLIST
$ bmake deinstall

37

Chapter 10. Creating a new pkgsrc package from scratch

$ bmake install

38

Chapter 11.

Package components - �les,
directories and contents

Whenever you're preparing a package, there are a number of �les involved which are described in the
following sections.

11.1. Makefile

Building, installation and creation of a binary package areall controlled by the package'sMakefile .
TheMakefile describes various things about a package, for example from where to get it, how to
con�gure, build, and install it.

A packageMakefile contains several sections that describe the package.

In the �rst section there are the following variables, whichshould appear exactly in the order given here.
The order and grouping of the variables is mostly historicaland has no further meaning.

• DISTNAMEis the basename of the distribution �le to be downloaded fromthe package's website.

• PKGNAMEis the name of the package, as used by pkgsrc. You need to provide it if DISTNAME(which is
the default) is not a good name for the package in pkgsrc orDISTNAMEis not provided (no distribution
�le is required). Usually it is the pkgsrc directory name together with the version number. It must
match the regular expression^[A-Za-z0-9][A-Za-z0-9-_.+] * $, that is, it starts with a letter or
digit, and contains only letters, digits, dashes, underscores, dots and plus signs.

• CATEGORIESis a list of categories which the package �ts in. You can choose any of the top-level
directories of pkgsrc for it.

Currently the following values are available forCATEGORIES. If more than one is used, they need to
be separated by spaces:

archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm
comms fonts math pkgtools www
converters games mbone print x11

• MASTER_SITES, DYNAMIC_MASTER_SITES, DIST_SUBDIR, EXTRACT_SUFXandDISTFILES are
discussed in detail inSection 17.5.

The second section contains information about separately downloaded patches, if any.

39

Chapter 11. Package components - �les, directories and contents

• PATCHFILES: Name(s) of additional �les that contain distribution patches. There is no default. pkgsrc
will look for them atPATCH_SITES. They will automatically be uncompressed before patching if the
names end with.gz or .Z .

• PATCH_SITES: Primary location(s) for distribution patch �les (seePATCHFILESabove) if not found
locally.

• PATCH_DIST_STRIP: an argument to patch(1) that sets the pathname strip count to help �nd the
correct �les to patch. It defaults to-p0.

The third section contains the following variables.

• MAINTAINER is the email address of the person who feels responsible for this package, and who is
most likely to look at problems or questions regarding this package which have been reported with
send-pr(1). Other developers may contact theMAINTAINERbefore making changes to the package, but
are not required to do so. When packaging a new program, setMAINTAINER to yourself. If you really
can't maintain the package for future updates, set it to <pkgsrc-users@NetBSD.org >.

• OWNERshould be used instead ofMAINTAINERwhen you do not want other developers to update or
change the package without contacting you �rst. A package Make�le should contain one of
MAINTAINERor OWNER, but not both.

• HOMEPAGEis a URL where users can �nd more information about the package.

• COMMENTis a one-line description of the package (should not includethe package name).

• LICENSE indicates the license(s) applicable for the package. SeeSection 19.1.3for further details.

Other variables that affect the build:

• WRKSRC: The directory where the interesting distribution �les of the package are found. The default is
${WRKDIR}/${DISTNAME} , which works for most packages.

If a package doesn't create a subdirectory for itself (most GNU software does, for instance), but
extracts itself in the current directory, you should setWRKSRC=${WRKDIR}.

If a package doesn't create a subdirectory with the name ofDISTNAMEbut some different name, set
WRKSRCto point to the proper name in${WRKDIR} , for example
WRKSRC=${WRKDIR}/${DISTNAME}/unix . Seelang/tcl andx11/tk for other examples.

The name of the working directory created by pkgsrc is taken from theWRKDIR_BASENAMEvariable.
By default, its value iswork . If you want to use the same pkgsrc tree for building different kinds of
binary packages, you can change the variable according to your needs. Two other variables handle
common cases of settingWRKDIR_BASENAMEindividually. If OBJHOSTNAMEis de�ned inmk.conf ,
the �rst component of the host's name is attached to the directory name. IfOBJMACHINEis de�ned,
the platform name is attached, which might look likework.i386 or work.sparc .

Please pay attention to the following gotchas:

• Add MANCOMPRESSEDif man pages are installed in compressed form by the package.For packages
using BSD-style make�les which honor MANZ, there isMANCOMPRESSED_IF_MANZ.

40

Chapter 11. Package components - �les, directories and contents

• Replace/usr/local with “${PREFIX}” in all �les (see patches, below).

• If the package installs any info �les, seeSection 19.6.7.

11.2. distinfo

Thedistinfo �le contains the message digest, or checksum, of each dist�le needed for the package.
This ensures that the dist�les retrieved from the Internet have not been corrupted during transfer or
altered by a malign force to introduce a security hole. To provide maximum security, all dist�les are
protected using three different message digest algorithms(SHA1, RMD160, SHA512), as well as the �le
size.

Thedistinfo �le also contains the checksums for all the patches found in thepatches directory (see
Section 11.3).

To regenerate thedistinfo �le, use themake distinfo command.

Some packages have different sets of dist�les depending on the platform, for examplelang/openjdk7 .
These are kept in the samedistinfo �le and care should be taken when upgrading such a package to
ensure dist�le information is not lost.

11.3. patches/ *
Some packages don't work out-of-the box on the various platforms that are supported by pkgsrc. These
packages need to be patched to make them work. The patch �les can be found in thepatches/ directory.

In thepatchphase, these patches are applied to the �les inWRKSRCdirectory after extracting them, in
alphabetic order.

11.3.1. Structure of a single patch �le

Thepatch- * �les should be indiff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can setPATCH_FUZZ_FACTOR=-F2). Furthermore, each patch should
contain only changes for a single �le, and no �le should be patched by more than one patch �le. This
helps to keep future modi�cations simple.

Each patch �le is structured as follows: In the �rst line, there is the RCS Id of the patch itself. The
second line should be empty for aesthetic reasons. After that, there should be a comment for each change
that the patch does. There are a number of standard cases:

• Patches for commonly known vulnerabilities should mentionthe vulnerability ID (CAN, CVE).

• Patches that change source code should mention the platformand other environment (for example, the
compiler) that the patch is needed for.

The patch should be commented so that any developer who knowsthe code of the application can make
some use of the patch. Special care should be taken for the upstream developers, since we generally want
that they accept our patches, so we have less work in the future.

41

Chapter 11. Package components - �les, directories and contents

11.3.2. Creating patch �les

One important thing to mention is to pay attention that no RCSIDs get stored in the patch �les, as these
will cause problems when later checked into the NetBSD CVS tree. Use thepkgdiff command from the
pkgtools/pkgdiff package to avoid these problems.

For even more automation, we recommend usingmkpatchesfrom the same package to make a whole set
of patches. You just have to backup �les before you edit them to filename.orig , e.g. withcp -p
�lename �lename.orig or, easier, by usingpkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of patches with the previously existing one with
patchdiff . The �les in patches are replaced by new �les, so carefully check if you want to take all the
changes.

When you have �nished a package, remember to generate the checksums for the patch �les by using the
make makepatchsumcommand, seeSection 11.2.

When adding a patch that corrects a problem in the dist�le (rather than e.g. enforcing pkgsrc's view of
where man pages should go), send the patch as a bug report to the maintainer. This bene�ts non-pkgsrc
users of the package, and usually makes it possible to removethe patch in future version.

The �le names of the patch �les are usually of the formpatch- path_to_file__with__underscores.c .
Many packages still use the previous conventionpatch- [a-z][a-z] , but new patches should be of the
form containing the �lename.mkpatchesincluded inpkgtools/pkgdiff takes care of the name
automatically.

11.3.3. Sources where the patch �les come from

If you want to share patches between multiple packages in pkgsrc, e.g. because they use the same
dist�les, setPATCHDIRto the path where the patch �les can be found, e.g.:

PATCHDIR= ${.CURDIR}/../xemacs/patches

Patch �les that are distributed by the author or other maintainers can be listed inPATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc, they can be kept outside the
pkgsrc tree in the$LOCALPATCHESdirectory. The directory tree there is expected to have the same
“category/package” structure as pkgsrc, and patches are expected to be stored inside these dirs (also
known as$LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch for
pkgsrc/graphics/png , keep it in$LOCALPATCHES/graphics/png/mypatch . All �les in the
named directory are expected to be patch �les, andthey are applied after pkgsrc patches are applied.

11.3.4. Patching guidelines

When �xing a portability issue in the code do not use preprocessor magic to check for the current
operating system nor platform. Doing so hurts portability to other platforms because the OS-speci�c
details are not abstracted appropriately.

The general rule to follow is: instead of checking for the operating system the application is being built
on, check for the speci�cfeaturesyou need. For example, instead of assuming that kqueue is available
under NetBSD and using the__NetBSD__ macro to conditionalize kqueue support, add a check that
detects kqueue itself — yes, this generally involves patching thecon�gure script. There is absolutely

42

Chapter 11. Package components - �les, directories and contents

nothing that prevents some OSes from adopting interfaces from other OSes (e.g. Linux implementing
kqueue), something that the above checks cannot take into account.

Of course, checking for features generally involves more work on the developer's side, but the resulting
changes are cleaner and there are chances they will work on many other platforms. Not to mention that
there are higher chances of being later integrated into the mainstream sources. Remember:It doesn't
work unless it is right!

Some typical examples:

Table 11-1. Patching examples

Where Incorrect Correct

con�gure script case ${target_os} in

netbsd *) have_kvm=yes ;;

*) have_kvm=no ;;

esac

AC_CHECK_LIB(kvm, kvm_open, have_kvm=yes,

C source �le #if defined(__NetBSD__)

include <sys/event.h>

#endif

#if defined(HAVE_SYS_EVENT_H)

include <sys/event.h>

#endif

C source �le int monitor_file(...) {

#if defined(__NetBSD__)

int fd = kqueue();

... #else ...

#endif }

int monitor_file(...) {

#if defined(HAVE_KQUEUE)

int fd = kqueue();

... #else ...

#endif }

11.3.5. Feedback to the author

Always, always,alwaysfeed back anyportability �xes or improvements you do to a package to the
mainstream developers. This is the only way to get their attention on portability issues and to ensure that
future versions can be built out-of-the box on NetBSD. Furthermore, any user that gets newer dist�les
will get the �xes straight from the packaged code.

This generally involves cleaning up the patches (because sometimes the patches that are added to pkgsrc
are quick hacks), �ling bug reports in the appropriate trackers for the projects and working with the
mainstream authors to accept your changes. It isextremely importantthat you do it so that the packages
in pkgsrc are kept simple and thus further changes can be donewithout much hassle.

When you have done this, please add a URL to the upstream bug report to the patch comment.

Support the idea of free software!

43

Chapter 11. Package components - �les, directories and contents

11.4. Other mandatory �les

DESCR

A multi-line description of the piece of software. This should include any credits where they are
due. Please bear in mind that others do not share your sense ofhumour (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This �le governs the �les that are installed on your system: all the binaries, manual pages, etc.
There are other directives which may be entered in this �le, to control the creation and deletion of
directories, and the location of inserted �les. SeeChapter 13for more information.

11.5. Optional �les

11.5.1. Files affecting the binary package

INSTALL

This shell script is invoked twice by pkg_add(1). First timeafter package extraction and before �les
are moved in place, the second time after the �les to install are moved in place. This can be used to
do any custom procedures not possible with @exec commands inPLIST . See pkg_add(1) and
pkg_create(1) for more information. See alsoSection 15.1. Please note that you can modify
variables in it easily by usingFILES_SUBST in the package'sMakefile :

FILES_SUBST+= SOMEVAR="somevalue"

replaces "@SOMEVAR@" with “somevalue” in theINSTALL . By default, substitution is performed
for PREFIX, LOCALBASE, X11BASE, VARBASE, and a few others, typemake help
topic=FILES_SUBSTfor a complete list.

DEINSTALL

This script is executed before and after any �les are removed. It is this script's responsibility to
clean up any additional messy details around the package's installation, since all pkg_delete knows
is how to delete the �les created in the original distribution. See pkg_delete(1) and pkg_create(1)
for more information. The same methods to replace variablescan be used as for theINSTALL �le.

MESSAGE

This �le is displayed after installation of the package. Useful for things like legal notices on
almost-free software and hints for updating con�g �les after installing modules for apache, PHP etc.
Please note that you can modify variables in it easily by using MESSAGE_SUBSTin the package's
Makefile :

MESSAGE_SUBST+= SOMEVAR="somevalue"

replaces "${SOMEVAR}" with “somevalue” inMESSAGE. By default, substitution is performed for
PKGNAME, PKGBASE, PREFIX, LOCALBASE, X11BASE, PKG_SYSCONFDIR, ROOT_GROUP, and
ROOT_USER.

44

Chapter 11. Package components - �les, directories and contents

You can display a different or additional �les by setting theMESSAGE_SRCvariable. Its default is
MESSAGE, if the �le exists.

ALTERNATIVES

This �le is used by the alternatives framework. It creates, con�gures, and destroys generic wrappers
used to run programs with similar interfaces. See pkg_alternatives(8) from
pkgtools/pkg_alternatives for more information.

Each line of the �le contains two �lenames, �rst the wrapper and then the alternative provided by
the package. Both paths are relative toPREFIX.

11.5.2. Files affecting the build process

Makefile.common

This �le contains arbitrary things that could also go into aMakefile , but its purpose is to be used
by more than one package. This �le should only be used when thepackages that will use the �le are
known in advance. For other purposes it is often better to write a* .mk �le and give it a good name
that describes what it does.

buildlink3.mk

This �le contains the dependency information for the buildlink3 framework (seeChapter 14).

hacks.mk

This �le contains workarounds for compiler bugs and similarthings. It is included automatically by
the pkgsrc infrastructure, so you don't need an extra.include line for it.

options.mk

This �le contains the code for the package-speci�c options (seeChapter 16) that can be selected by
the user. If a package has only one or two options, it is equally acceptable to put the code directly
into theMakefile .

11.5.3. Files affecting nothing at all

README*

These �les do not take place in the creation of a package and thus are purely informative to the
package developer.

TODO

This �le contains things that need to be done to make the package even better.

45

Chapter 11. Package components - �les, directories and contents

11.6. work *
When you typemake, the distribution �les are unpacked into the directory denoted byWRKDIR. It can be
removed by runningmake clean. Besides the sources, this directory is also used to keep various
timestamp �les. The directory getsremoved completelyon clean. The default is${.CURDIR}/work or
${.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINEis set.

11.7. files/ *
If you have any �les that you wish to be placed in the package prior to con�guration or building, you
could place these �les here and use a${CP} command in the “pre-con�gure” target to achieve this.
Alternatively, you could simply diff the �le against/dev/null and use the patch mechanism to manage
the creation of this �le.

If you want to share �les in this way with other packages, set theFILESDIR variable to point to the other
package'sfiles directory, e.g.:

FILESDIR=${.CURDIR}/../xemacs/files

46

Chapter 12.

Programming in Makefile s

Pkgsrc consists of manyMakefile fragments, each of which forms a well-de�ned part of the pkgsrc
system. Using the make(1) system as a programming language for a big system like pkgsrc requires
some discipline to keep the code correct and understandable.

The basic ingredients forMakefile programming are variables (which are actually macros) and shell
commands. Among these shell commands may even be more complex ones like awk(1) programs. To
make sure that every shell command runs as intended it is necessary to quote all variables correctly when
they are used.

This chapter describes some patterns, that appear quite often inMakefile s, including the pitfalls that
come along with them.

12.1. Caveats

• When you are creating a �le as a target of a rule, always write the data to a temporary �le �rst and
�nally rename that �le. Otherwise there might occur an errorin the middle of generating the �le, and
when the user runs make(1) for the second time, the �le existsand will not be regenerated properly.
Example:

wrong:
@echo "line 1" > ${.TARGET}
@echo "line 2" >> ${.TARGET}
@false

correct:
@echo "line 1" > ${.TARGET}.tmp
@echo "line 2" >> ${.TARGET}.tmp
@false
@mv ${.TARGET}.tmp ${.TARGET}

When you runmake wrongtwice, the �le wrong will exist, although there was an error message in
the �rst run. On the other hand, runningmake correctgives an error message twice, as expected.

You might remember that make(1) sometimes removes${.TARGET} in case of error, but this only
happens when it is interrupted, for example by pressing^C. This doesnot happen when one of the
commands fails (like false(1) above).

12.2. Makefile variables
Makefile variables contain strings that can be processed using the �ve operators “=”, “+=”, “?=”, “:=”,
and “!=”, which are described in the make(1) man page.

47

Chapter 12. Programming inMakefile s

When a variable's value is parsed from aMakefile , the hash character “#” and the backslash character
“\” are handled specially. If a backslash is followed by a newline, any whitespace immediately in front of
the backslash, the backslash, the newline, and any whitespace immediately behind the newline are
replaced with a single space. A backslash character and an immediately following hash character are
replaced with a single hash character. Otherwise, the backslash is passed as is. In a variable assignment,
any hash character that is not preceded by a backslash startsa comment that continues up to the end of
the logical line.

The evaluation of variables either happens immediately or lazy. It happens immediately when the
variable occurs on the right-hand side of the “:=” or the “!=”operator, in a.if condition or a.for loop.
In the other cases, it is evaluated lazily.

Some of the modi�ers split the string into words and then operate on the words, others operate on the
string as a whole. When a string is split into words, it is split like in sh(1).

There are several types of variables that should be handled differently. Strings and two types of lists.

• Stringscan contain arbitrary characters. Nevertheless, you should restrict yourself to only using
printable characters. Examples arePREFIX andCOMMENT.

• Internal listsare lists that are never exported to any shell command. Theirelements are separated by
whitespace. Therefore, the elements themselves cannot have embedded whitespace. Any other
characters are allowed. Internal lists can be used in.for loops. Examples areDEPENDSand
BUILD_DEPENDS.

• External listsare lists that may be exported to a shell command. Their elements can contain any
characters, including whitespace. That's why they cannot be used in.for loops. Examples are
DISTFILES andMASTER_SITES.

12.2.1. Naming conventions

• All variable names starting with an underscore are reservedfor use by the pkgsrc infrastructure. They
shall not be used by packageMakefile s.

• In .for loops you should use lowercase variable names for the iteration variables.

• All list variables should have a “plural” name, e.g.PKG_OPTIONSor DISTFILES .

12.3. Code snippets

12.3.1. Adding things to a list

When adding a string that possibly contains whitespace or quotes to a list (example 1), it must be quoted
using the:Q modi�er.

When adding another list to a list (example 2), it must not be quoted, since its elements are already
quoted.

STRING= foo * bar `date`
LIST= # empty

48

Chapter 12. Programming inMakefile s

ANOTHER_LIST= a=b c=d

LIST+= ${STRING:Q} # 1
LIST+= ${ANOTHER_LIST} # 2

12.3.2. Echoing a string exactly as-is

Echoing a string containing special characters needs special work.

STRING= foo bar < > * `date` $$HOME ' "
EXAMPLE_ENV= string=${STRING:Q} x=multiple\ quoted\ wor ds

all:
echo ${STRING} # 1
echo ${STRING:Q} # 2
printf '%s\n' ${STRING:Q}” # 3
env ${EXAMPLE_ENV} sh -c 'echo "$$string"; echo "$$x"' # 4

Example 1 leads to a syntax error in the shell, as the characters are just copied.

Example 2 quotes the string so that the shell interprets it correctly. But the echo command may
additionally interpret strings with a leading dash or thosecontaining backslashes.

Example 3 can handle arbitrary strings, since printf(1) only interprets the format string, but not the next
argument. The trailing single quotes handle the case when the string is empty. In that case, the :Q
modi�er would result in an empty string too, which would thenbe skipped by the shell. For printf(1) this
doesn't make a difference, but other programs may care.

In example 4, theEXAMPLE_ENVdoes not need to be quoted because the quoting has already been done
when adding elements to the list.

12.3.3. Passing CFLAGSto GNU con�gure scripts

When passingCFLAGSor similar variables to a GNU-style con�gure script (especially those that call
other con�gure scripts), it must not have leading or trailing whitespace, since otherwise the con�gure
script gets confused. To trim leading and trailing whitespace, use the:M modi�er, as in the following
example:

CPPFLAGS= # empty
CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX}\"
CPPFLAGS+= ${MY_CPPFLAGS}

CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:M* :Q}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS:Q}x # properly trimmed

In this example,CPPFLAGShas both leading and trailing whitespace because the+= operator always
adds a space.

49

Chapter 12. Programming inMakefile s

12.3.4. Handling possibly empty variables

When a possibly empty variable is used in a shell program, it may lead to a syntax error.

EGFILES= # empty

install-examples: # produces a syntax error in the shell
for egfile in ${EGFILES}; do \

echo "Installing $$egfile"; \
done

The shell only sees the textfor egfile in ; do , since${EGFILES} is replaced with an empty string
by make(1). To �x this syntax error, use one of the snippets below.

EMPTY= # empty

install-examples:
for egfile in ${EGFILES} ""; do \

[-n "$$egfile"] || continue; \
echo "Installing $$egfile"; \

done

In this case, an empty string is appended to the iteration list (to prevent the syntax error) and �ltered out
later.

EGFILES= # empty

install-examples:
.for egfile in ${EGFILES}

echo "Installing ${egfile}"
.endfor

This variant only works whenEGFILES does not contain �lenames with spaces, since the.for loop
splits on simple whitespace.

To have a shell command test whether a make variable is empty,use the following code:${TEST} -z

${POSSIBLY_EMPTY:Q}"" .

50

Chapter 13.

PLIST issues

ThePLIST �le contains a package's “packing list”, i.e. a list of �les that belong to the package (relative
to the${PREFIX} directory it's been installed in) plus some additional statements - see the
pkg_create(1) man page for a full list. This chapter addresses some issues that need attention when
dealing with thePLIST �le (or �les, see below!).

13.1. RCS ID
Be sure to add a RCS ID line as the �rst thing in anyPLIST �le you write:

@comment $NetBSD $

An arti�cial space has been added between NetBSD and $, this is a workaround here to prevent CVS
expanding to the �lename of the guide. When adding the RCS ID the space should be omitted.

13.2. Semi-automatic PLIST generation
You can use themake print-PLIST command to output a PLIST that matches any new �les since the
package was extracted. SeeSection 17.17for more information on this target.

13.3. Tweaking output of make print-PLIST
ThePRINT_PLIST_AWKvariable takes a set of AWK patterns and actions that are usedto �lter the output
of print-PLIST. You canappendany chunk of AWK scripting you like to it, but be careful with quoting.

For example, to get all �les inside thelibdata/foo directory removed from the resulting PLIST:

PRINT_PLIST_AWK+= /^libdata\/foo/ { next; }

13.4. Variable substitution in PLIST
A number of variables are substituted automatically in PLISTs when a package is installed on a system.
This includes the following variables:

${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}

Some packages like emacs and perl embed information about which architecture they were built on
into the pathnames where they install their �les. To handle this case, PLIST will be preprocessed
before actually used, and the symbol “${MACHINE_ARCH}” will be replaced by whatuname -p

51

Chapter 13. PLIST issues

gives. The same is done if the string${MACHINE_GNU_ARCH}is embedded in PLIST somewhere -
use this on packages that have GNU autoconf-created con�gure scripts.

Legacy note: There used to be a symbol “$ARCH” that was replaced by the output of uname
-m, but that's no longer supported and has been removed.

${OPSYS} , ${LOWER_OPSYS}, ${OS_VERSION}

Some packages want to embed the OS name and version into some paths. To do this, use these
variables in thePLIST :

• ${OPSYS} - output of “uname -s”

• ${LOWER_OPSYS}- lowercase common name (eg. “solaris”)

• ${OS_VERSION} - “uname -r”

For a list of values which are replaced by default, the outputof make help topic=PLIST_SUBSTas
well as searching thepkgsrc/mk directory withgrep for PLIST_SUBST should help.

If you want to change other variables not listed above, you can add variables and their expansions to this
variable in the following way, similar toMESSAGE_SUBST(seeSection 11.5):

PLIST_SUBST+= SOMEVAR="somevalue"

This replaces all occurrences of “${SOMEVAR}” in thePLIST with “somevalue”.

ThePLIST_VARS variable can be used to simplify the common case of conditionally including some
PLIST entries. It can be done by addingPLIST_VARS+=foo and setting the correspondingPLIST.foo

variable toyes if the entry should be included. This will substitute “${PLIST.foo} ” in the PLIST with
either “"" ” or “ "@comment " ”. For example, inMakefile :

PLIST_VARS+= foo
.if condition
PLIST.foo= yes
.else

And then inPLIST :

@comment $NetBSD $
bin/bar
man/man1/bar.1
${PLIST.foo}bin/foo
${PLIST.foo}man/man1/foo.1
${PLIST.foo}share/bar/foo.data

An arti�cial space has been added between NetBSD and $, this is a workaround here to prevent CVS
expanding to the �lename of the guide. When adding the RCS ID the space should be ommited.

52

Chapter 13. PLIST issues

13.5. Man page compression
Man pages should be installed in compressed form ifMANZis set (inbsd.own.mk), and uncompressed
otherwise. To handle this in thePLIST �le, the suf�x “.gz” is appended/removed automatically forman
pages according toMANZandMANCOMPRESSEDbeing set or not, see above for details. This modi�cation
of thePLIST �le is done on a copy of it, notPLIST itself.

13.6. Changing PLIST source with PLIST_SRC

To use one or more �les as source for thePLIST used in generating the binary package, set the variable
PLIST_SRC to the names of that �le(s). The �les are later concatenated using cat(1), and the order of
things is important. The default forPLIST_SRC is ${PKGDIR}/PLIST .

13.7. Platform-speci�c and differing PLISTs
Some packages decide to install a different set of �les basedon the operating system being used. These
differences can be automatically handled by using the following �les:

• PLIST.common

• PLIST.${OPSYS}

• PLIST.${MACHINE_ARCH}

• PLIST.${OPSYS}-${MACHINE_ARCH}

• PLIST.common_end

13.8. Build-speci�c PLISTs
Some packages decide to generate hard-to-guess �le names during installation that are hard to wire down.

In such cases, you can set theGENERATE_PLISTvariable to shell code terminated (with a semicolon)
that will output PLIST entries which will be appended to the PLIST

You can �nd one example in editors/xemacs:

GENERATE_PLIST+= ${ECHO} bin/${DISTNAME}-`${WRKSRC}/s rc/xemacs -sd`.dmp ;

which will append something likebin/xemacs-21.4.23-54e8ea71.dmp to thePLIST .

13.9. Sharing directories between packages
A “shared directory” is a directory where multiple (and unrelated) packages install �les. These
directories were problematic because you had to add specialtricks in the PLIST to conditionally remove
them, or have some centralized package handle them.

In pkgsrc, it is now easy: Each package should create directories and install �les as needed;pkg_delete
will remove any directories left empty after uninstalling apackage.

53

Chapter 13. PLIST issues

If a package needs an empty directory to work, create the directory during installation as usual, and also
add an entry to the PLIST:

@pkgdir path/to/empty/directory

or take a look atMAKE_DIRSandOWN_DIRS.

54

Chapter 14.

Buildlink methodology

Buildlink is a framework in pkgsrc that controls what headers and libraries are seen by a package's
con�gure and build processes. This is implemented in a two step process:

1. Symlink headers and libraries for dependencies intoBUILDLINK_DIR , which by default is a
subdirectory ofWRKDIR.

2. Create wrapper scripts that are used in place of the normalcompiler tools that translate
-I${LOCALBASE}/include and-L${LOCALBASE}/lib into references toBUILDLINK_DIR . The
wrapper scripts also make native compiler on some operatingsystems look like GCC, so that
packages that expect GCC won't require modi�cations to build with those native compilers.

This normalizes the environment in which a package is built so that the package may be built
consistently despite what other software may be installed.Please note that the normal system header and
library paths, e.g./usr/include , /usr/lib , etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied software.

14.1. Converting packages to use buildlink3
The process of converting packages to use the buildlink3 framework (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripts instead of the actual toolchain. Some packages
are tricky, and the only way to know for sure is the check${WRKDIR}/.work.log to see if the
wrappers are being invoked.

2. Don't overridePREFIX from within the package Make�le, e.g. Java VMs, standalone shells, etc.,
because the code to symlink �les into${BUILDLINK_DIR} looks for �les relative to “pkg_info -qp
pkgname”.

3. Remember thatonly thebuildlink3.mk �les that you list in a package's Make�le are added as
dependencies for that package.

If a dependency on a particular package is required for its libraries and headers, then we replace:

DEPENDS+= foo>=1.1.0:../../category/foo

with

.include "../../category/foo/buildlink3.mk"

The buildlink3.mk �les usually de�ne the required dependencies. If you need a newer version of the
dependency when using buildlink3.mk �les, then you can de�ne it in your Make�le; for example:

55

Chapter 14. Buildlink methodology

BUILDLINK_API_DEPENDS.foo+= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are severalbuildlink3.mk �les in pkgsrc/mk that handle special package issues:

• bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB implementation based on
the values ofBDB_ACCEPTEDandBDB_DEFAULT.

• curses.buildlink3.mk : If the system comes with neither Curses nor NCurses, this will take care
to install thedevel/ncurses package.

• krb5.buildlink3.mk uses the value ofKRB5_ACCEPTEDto choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberos 5implementation.

• motif.buildlink3.mk checks for a system-provided Motif installation or adds a dependency on
x11/lesstif or x11/motif . The user can setMOTIF_TYPEto “dt”, “lesstif” or “motif” to choose
which Motif version will be used.

• readline.buildlink3.mk checks for a system-provided GNU readline or editline (libedit)
installation, or adds a dependency ondevel/readline , devel/editline . The user can set
READLINE_DEFAULTto choose readline implementation. If your package really needs GNU readline
library, its Make�le should includedevel/readline/buildlink3.mk instead of
readline.buildlink3.mk .

• oss.buildlink3.mk de�nes several variables that may be used by packages that use the Open
Sound System (OSS) API.

• pgsql.buildlink3.mk will accept any of the Postgres versions in the variable
PGSQL_VERSIONS_ACCEPTEDand default to the versionPGSQL_VERSION_DEFAULT. See the �le for
more information.

• pthread.buildlink3.mk uses the value ofPTHREAD_OPTSand checks for native pthreads or adds
a dependency ondevel/pth as needed.

• xaw.buildlink3.mk uses the value ofXAW_TYPEto choose a particular Athena widgets library.

The comments in thosebuildlink3.mk �les provide a more complete description of how to use them
properly.

14.2. Writing buildlink3.mk �les
A package'sbuildlink3.mk �le is included by Make�les to indicate the need to compile and link
against header �les and libraries provided by the package. Abuildlink3.mk �le should always
provide enough information to add the correct type of dependency relationship and include any other
buildlink3.mk �les that it needs to �nd headers and libraries that it needs in turn.

To generate an initialbuildlink3.mk �le for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, the following
command will generate a good starting point forbuildlink3.mk �les:

% cd pkgsrc/ category / pkgdir

% createbuildlink >buildlink3.mk

56

Chapter 14. Buildlink methodology

14.2.1. Anatomy of a buildlink3.mk �le

The following real-life examplebuildlink3.mk is taken frompkgsrc/graphics/tiff :

$NetBSD: buildlink3.mk,v 1.16 2009/03/20 19:24:45 joerg Exp $

BUILDLINK_TREE+= tiff

.if !defined(TIFF_BUILDLINK3_MK)
TIFF_BUILDLINK3_MK:=

BUILDLINK_API_DEPENDS.tiff+= tiff>=3.6.1
BUILDLINK_ABI_DEPENDS.tiff+= tiff>=3.7.2nb1
BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff

.include "../../devel/zlib/buildlink3.mk"

.include "../../graphics/jpeg/buildlink3.mk"

.endif # TIFF_BUILDLINK3_MK

BUILDLINK_TREE+= -tiff

The header and footer manipulateBUILDLINK_TREE, which is common across allbuildlink3.mk �les
and is used to track the dependency tree.

The main section is protected from multiple inclusion and controls how the dependency onpkg is added.
Several important variables are set in the section:

• BUILDLINK_API_DEPENDS. pkg is the actual dependency recorded in the installed package;this
should always be set using+= to ensure that we're appending to any pre-existing list of values. This
variable should be set to the �rst version of the package thathad an backwards-incompatible API
change.

• BUILDLINK_PKGSRCDIR.pkg is the location of thepkg pkgsrc directory.

• BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we useBUILD_DEPENDSor
DEPENDSto add the dependency onpkg . The build dependency is selected by setting
BUILDLINK_DEPMETHOD.pkg to “build”. By default, the full dependency is used.

• BUILDLINK_INCDIRS. pkg andBUILDLINK_LIBDIRS. pkg (not shown above) are lists of
subdirectories of${BUILDLINK_PREFIX. pkg } to add to the header and library search paths. These
default to “include” and “lib” respectively.

• BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor �ags to add toCPPFLAGS,
which are passed on to the con�gure and build phases. The “-I”option should be avoided and instead
be handled usingBUILDLINK_INCDIRS. pkg as above.

The following variables are all optionally de�ned within this second section (protected against multiple
inclusion) and control which package �les are symlinked into ${BUILDLINK_DIR} and how their names
are transformed during the symlinking:

• BUILDLINK_FILES. pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX. pkg } to be symlinked into${BUILDLINK_DIR} , e.g.include/ * .h .

57

Chapter 14. Buildlink methodology

• BUILDLINK_FILES_CMD. pkg (not shown above) is a shell pipeline that outputs to stdout alist of �les
relative to${BUILDLINK_PREFIX. pkg } . The resulting �les are to be symlinked into
${BUILDLINK_DIR} . By default, this takes the+CONTENTSof apkg and �lters it through
${BUILDLINK_CONTENTS_FILTER. pkg } .

• BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a �lter command that �lters+CONTENTS

input into a list of �les relative to${BUILDLINK_PREFIX. pkg } on stdout. By default,
BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of theinclude andlib directories in the
package+CONTENTS.

• BUILDLINK_FNAME_TRANSFORM.pkg (not shown above) is a list of sed arguments used to transform
the name of the source �lename into a destination �lename, e.g. -e "s|/curses.h|/ncurses.h|g".

This section can additionally include anybuildlink3.mk needed forpkg 's library dependencies.
Including thesebuildlink3.mk �les means that the headers and libraries for these dependencies are
also symlinked into${BUILDLINK_DIR} whenever thepkg buildlink3.mk �le is included.
Dependencies are only added for directly includebuildlink3.mk �les.

When providing abuildlink3.mk and including otherbuildlink3.mk �les in it, please only add
necessary ones, i.e., those whose libraries or header �les are automatically exposed when the package is
use.

In particular, if only an executable (bin/foo) is linked against a library, that library does not need to be
propagated in thebuildlink3.mk �le.

The following steps should help you decide if abuildlink3.mk �le needs to be included:

• Look at the installed header �les: What headers do they include? The packages providing these �les
must be buildlinked.

• Run ldd on all installed libraries and look against what other libraries they link. Some of the packages
providing these probably need to be buildlinked; however, it's not automatic, since e.g. GTK on some
systems pulls in the X libraries, so they will show up in theldd output, while on others (like OS X) it
won't. ldd output can thus only be used as a hint.

14.2.2. Updating BUILDLINK_API_DEPENDS. pkg and
BUILDLINK_ABI_DEPENDS. pkg in buildlink3.mk �les

These two variables differ in that one describes source compatibility (API) and the other binary
compatibility (ABI). The difference is that a change in the API breaks compilation of programs while
changes in the ABI stop compiled programs from running.

Changes to theBUILDLINK_API_DEPENDS. pkg variable in abuildlink3.mk �le happen very rarely.
One possible reason is that all packages depending on this already need a newer version. In case it is
bumped see the description below.

The most common example of an ABI change is that the major version of a shared library is increased. In
this case,BUILDLINK_ABI_DEPENDS. pkg should be adjusted to require at least the new package
version. Then the packages that depend on this package need their PKGREVISIONs increased and, if they
havebuildlink3.mk �les, their BUILDLINK_ABI_DEPENDS. pkg adjusted, too. This is needed so

58

Chapter 14. Buildlink methodology

pkgsrc will require the correct package dependency and not settle for an older one when building the
source.

SeeSection 19.1.5for more information about dependencies on other packages,including the
BUILDLINK_ABI_DEPENDSandABI_DEPENDSde�nitions.

Please take careful consideration before adjustingBUILDLINK_API_DEPENDS. pkg or
BUILDLINK_ABI_DEPENDS. pkg as we don't want to cause unneeded package deletions and rebuilds. In
many cases, new versions of packages work just �ne with olderdependencies.

Also it is not needed to setBUILDLINK_ABI_DEPENDS. pkg when it is identical to
BUILDLINK_API_DEPENDS. pkg .

14.3. Writing builtin.mk �les
Some packages in pkgsrc install headers and libraries that coincide with headers and libraries present in
the base system. Aside from abuildlink3.mk �le, these packages should also include abuiltin.mk

�le that includes the necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk �le forpkg are:

1. It should setUSE_BUILTIN. pkg to either “yes” or “no” after it is included.

2. It shouldnot override anyUSE_BUILTIN. pkg which is already set before thebuiltin.mk �le is
included.

3. It should be written to allow multiple inclusion. This isveryimportant and takes careful attention to
Makefile coding.

14.3.1. Anatomy of a builtin.mk �le

The following is the recommended template for builtin.mk �les:

.if !defined(IS_BUILTIN.foo)
#
IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no

BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
version can be determined.
#
. if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0
. endif
.endif # IS_BUILTIN.foo

.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}

59

Chapter 14. Buildlink methodology

. if defined(BUILTIN_PKG.foo)

. for _depend_ in ${BUILDLINK_API_DEPENDS.foo}

. if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \

${PKG_ADMIN} pmatch '${_depend_}' ${BUILTIN_PKG.foo} \
&& ${ECHO} "yes" || ${ECHO} "no"

. endif

. endfor

. endif

.endif # USE_BUILTIN.foo

CHECK_BUILTIN.foo?= no
.if !empty(CHECK_BUILTIN.foo:M[nN][oO])
#
Here we place code that depends on whether USE_BUILTIN.foo is set to
"yes" or "no".
#
.endif # CHECK_BUILTIN.foo

The �rst section setsIS_BUILTIN. pkg depending on ifpkg really exists in the base system. This should
not be a base system software with similar functionality topkg ; it should only be “yes” if the actual
package is included as part of the base system. This variableis only used internally within the
builtin.mk �le.

The second section setsBUILTIN_PKG. pkg to the version ofpkg in the base system if it exists (if
IS_BUILTIN. pkg is “yes”). This variable is only used internally within thebuiltin.mk �le.

The third section setsUSE_BUILTIN. pkg and isrequiredin all builtin.mk �les. The code in this
section must make the determination whether the built-in software is adequate to satisfy the
dependencies listed inBUILDLINK_API_DEPENDS. pkg . This is typically done by comparing
BUILTIN_PKG. pkg against each of the dependencies inBUILDLINK_API_DEPENDS. pkg .
USE_BUILTIN. pkg mustbe set to the correct value by the end of thebuiltin.mk �le. Note that
USE_BUILTIN. pkg may be “yes” even ifIS_BUILTIN. pkg is “no” because we may make the
determination that the built-in version of the software is similar enough to be used as a replacement.

The last section is guarded byCHECK_BUILTIN. pkg , and includes code that uses the value of
USE_BUILTIN. pkg set in the previous section. This typically includes, e.g.,adding additional
dependency restrictions and listing additional �les to symlink into ${BUILDLINK_DIR} (via
BUILDLINK_FILES. pkg).

14.3.2. Global preferences for native or pkgsrc software

When building packages, it's possible to choose whether to set a global preference for using either the
built-in (native) version or the pkgsrc version of softwareto satisfy a dependency. This is controlled by
settingPREFER_PKGSRCandPREFER_NATIVE. These variables take values of either “yes”, “no”, or a
list of packages.PREFER_PKGSRCtells pkgsrc to use the pkgsrc versions of software, while
PREFER_NATIVEtells pkgsrc to use the built-in versions. Preferences are determined by the most
speci�c instance of the package in eitherPREFER_PKGSRCor PREFER_NATIVE. If a package is speci�ed
in neither or in both variables, thenPREFER_PKGSRChas precedence overPREFER_NATIVE. For
example, to require using pkgsrc versions of software for all but the most basic bits on a NetBSD system,
you can set:

60

Chapter 14. Buildlink methodology

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A packagemusthave abuiltin.mk �le to be listed inPREFER_NATIVE, otherwise it is simply ignored
in that list.

SettingPREFER_NATIVEshould be performed straight after bootstrap andPREFER_PKGSRCduring
bootstrap. Switching between settings globally at a later date can introduce complications with
dependency resolution. This is caused by packages built with the opposite preference being installed
alongside each other.

./bootstrap --prefer-pkgsrc yes

61

Chapter 15.

The pkginstall framework

This chapter describes the framework known aspkginstall , whose key features are:

• Generic installation and manipulation of directories and �les outside the pkgsrc-handled tree,
LOCALBASE.

• Automatic handling of con�guration �les during installation, provided that packages are correctly
designed.

• Generation and installation of system startup scripts.

• Registration of system users and groups.

• Registration of system shells.

• Automatic updating of fonts databases.

The following sections inspect each of the above points in detail.

You may be thinking that many of the things described here could be easily done with simple code in the
package's post-installation target (post-install). This is incorrect, as the code in them is only
executed when building from source. Machines using binary packages could not bene�t from it at all (as
the code itself could be unavailable). Therefore, the only way to achieve any of the items described above
is by means of the installation scripts, which are automatically generated by pkginstall.

15.1. Files and directories outside the installation pre�x
As you already know, thePLIST �le holds a list of �les and directories that belong to a package. The
names used in it are relative to the installation pre�x (${PREFIX}), which means that it cannot register
�les outside this directory (absolute path names are not allowed). Despite this restriction, some packages
need to install �les outside this location; e.g., under${VARBASE} or ${PKG_SYSCONFDIR}. The only
way to achieve this is to create such �les during installation time by using installation scripts.

The generic installation scripts are shell scripts that cancontain arbitrary code. The list of scripts to
execute is taken from theINSTALL_FILE variable, which defaults toINSTALL . A similar variable exists
for package removal (DEINSTALL_FILE , whose default isDEINSTALL). These scripts can run arbitrary
commands, so they have the potential to create and manage �les anywhere in the �le system.

Using these general installation �les is not recommended, but may be needed in some special cases. One
reason for avoiding them is that the user has to trust the packager that there is no unwanted or simply
erroneous code included in the installation script. Also, previously there were many similar scripts for
the same functionality, and �xing a common error involved �nding and changing all of them.

The pkginstall framework offers another, standardized way. It provides generic scripts to abstract the
manipulation of such �les and directories based on variables set in the package'sMakefile . The rest of
this section describes these variables.

62

Chapter 15. The pkginstall framework

15.1.1. Directory manipulation

The following variables can be set to request the creation ofdirectories anywhere in the �le system:

• MAKE_DIRSandOWN_DIRScontain a list of directories that should be created and should attempt to be
destroyed by the installation scripts. The difference between the two is that the latter prompts the
administrator to remove any directories that may be left after deinstallation (because they were not
empty), while the former does not. Example:

MAKE_DIRS+= ${VARBASE}/foo/private

• MAKE_DIRS_PERMSandOWN_DIRS_PERMScontain a list of tuples describing which directories
should be created and should attempt to be destroyed by the installation scripts. Each tuple holds the
following values, separated by spaces: the directory name,its owner, its group and its numerical mode.
For example:

MAKE_DIRS_PERMS+= ${VARBASE}/foo/private \
${REAL_ROOT_USER} ${REAL_ROOT_GROUP} 0700

The difference between the two is exactly the same as their non-PERMScounterparts.

15.1.2. File manipulation

Creating non-empty �les outside the installation pre�x is tricky because thePLIST forces all �les to be
inside it. To overcome this problem, the only solution is to extract the �le in the known place (i.e., inside
the installation pre�x) and copy it to the appropriate location during installation (done by the installation
scripts generated by pkginstall). We will call the former the master �le in the following paragraphs,
which describe the variables that can be used to automatically and consistently handle �les outside the
installation pre�x:

• CONF_FILESandREQD_FILESare pairs of master and target �les. During installation time, the
master �le is copied to the target one if and only if the latterdoes not exist. Upon deinstallation, the
target �le is removed provided that it was not modi�ed by the installation.

The difference between the two is that the latter prompts theadministrator to remove any �les that
may be left after deinstallation (because they were not empty), while the former does not.

• CONF_FILES_PERMSandREQD_FILES_PERMScontain tuples describing master �les as well as their
target locations. For each of them, it also speci�es their owner, their group and their numeric
permissions, in this order. For example:

REQD_FILES_PERMS+= ${PREFIX}/share/somefile ${VARBASE }/somefile \
${REAL_ROOT_USER} ${REAL_ROOT_GROUP} 0700

The difference between the two is exactly the same as their non-PERMScounterparts.

15.2. Con�guration �les
Con�guration �les are special in the sense that they are installed in their own speci�c directory,
PKG_SYSCONFDIR, and need special treatment during installation (most of which is automated by
pkginstall). The main concept you must bear in mind is that �les marked as con�guration �les are

63

Chapter 15. The pkginstall framework

automatically copied to the right place (somewhere insidePKG_SYSCONFDIR) during installationif and
only if they didn't exist before. Similarly, they will not be removed if they have local modi�cations. This
ensures that administrators never lose any custom changes they may have made.

15.2.1. How PKG_SYSCONFDIRis set

As said before, thePKG_SYSCONFDIRvariable speci�es where con�guration �les shall be installed. Its
contents are set based upon the following variables:

• PKG_SYSCONFBASE: The con�guration's root directory. Defaults to${PREFIX}/etc although it may
be overridden by the user to point to his preferred location (e.g.,/etc , /etc/pkg , etc.). Packages
must not use it directly.

• PKG_SYSCONFSUBDIR: A subdirectory ofPKG_SYSCONFBASEunder which the con�guration �les for
the package being built shall be installed. The de�nition ofthis variable only makes sense in the
package'sMakefile (i.e., it is not user-customizable).

As an example, consider the Apache package,www/apache24 , which places its con�guration �les
under thehttpd/ subdirectory ofPKG_SYSCONFBASE. This should be set in the package Make�le.

• PKG_SYSCONFVAR: Speci�es the name of the variable that holds this package'scon�guration directory
(if different fromPKG_SYSCONFBASE). It defaults toPKGBASE's value, and is always pre�xed with
PKG_SYSCONFDIR.

• PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the con�guration �les for the
package identi�ed byPKG_SYSCONFVAR's shall be placed.

Based on the above variables, pkginstall determines the value ofPKG_SYSCONFDIR, which is theonly
variable that can be used within a package to refer to its con�guration directory. The algorithm used to
set its value is basically the following:

1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR}is set, its value is used.

2. If the previous variable is not de�ned butPKG_SYSCONFSUBDIRis set in the package'sMakefile ,
the resulting value is${PKG_SYSCONFBASE}/${PKG_SYSCONFSUBDIR}.

3. Otherwise, it is set to${PKG_SYSCONFBASE}.

It is worth mentioning that${PKG_SYSCONFDIR}is automatically added toOWN_DIRS. See
Section 15.1.1what this means. This does not apply to subdirectories of${PKG_SYSCONFDIR}, they
still have to be created with OWN_DIRS or MAKE_DIRS.

15.2.2. Telling the software where con�guration �les are

Given that pkgsrc (and users!) expect con�guration �les to be in a known place, you need to teach each
package where it shall install its �les. In some cases you will have to patch the package Make�les to
achieve it. If you are lucky, though, it may be as easy as passing an extra �ag to the con�guration script;
this is the case of GNU Autoconf- generated �les:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

64

Chapter 15. The pkginstall framework

Note that this speci�es where the package has tolook for its con�guration �les, not where they will be
originally installed (although the difference is never explicit, unfortunately).

15.2.3. Patching installations

As said before, pkginstall automatically handles con�guration �les. This means thatthe packages
themselves must not touch the contents of${PKG_SYSCONFDIR}directly . Bad news is that many
software installation scripts will, out of the box, mess with the contents of that directory. So what is the
correct procedure to �x this issue?

You must teach the package (usually by manually patching it)to install any con�guration �les under the
examples hierarchy,share/examples/${PKGBASE}/ . This way, thePLIST registers them and the
administrator always has the original copies available.

Once the required con�guration �les are in place (i.e., under the examples hierarchy), the pkginstall
framework can use them as master copies during the package installation to update what is in
${PKG_SYSCONFDIR}. To achieve this, the variablesCONF_FILESandCONF_FILES_PERMSare used.
Check outSection 15.1.2for information about their syntax and their purpose. Here is an example, taken
from themail/mutt package:

EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that theEGDIRvariable is speci�c to that package and has no meaning outside it.

15.2.4. Disabling handling of con�guration �les

The automatic copying of con�g �les can be toggled by settingthe environment variablePKG_CONFIG
prior to package installation.

15.3. System startup scripts
System startup scripts are special �les because they must beinstalled in a place known by the underlying
OS, usually outside the installation pre�x. Therefore, thesame rules described inSection 15.1apply, and
the same solutions can be used. However, pkginstall provides a special mechanism to handle these �les.

In order to provide system startup scripts, the package has to:

1. Store the script inside${FILESDIR} , with the.sh suf�x appended. Considering theprint/cups
package as an example, it has acupsd.sh in its �les directory.

2. Tell pkginstall to handle it, appending the name of the script, without its extension, to the
RCD_SCRIPTSvariable. Continuing the previous example:

RCD_SCRIPTS+= cupsd

Once this is done, pkginstall will do the following steps foreach script in an automated fashion:

65

Chapter 15. The pkginstall framework

1. Process the �le found in the �les directory applying all the substitutions described in the
FILES_SUBST variable.

2. Copy the script from the �les directory to the examples hierarchy,
${PREFIX}/share/examples/rc.d/ . Note that this master �le must be explicitly registered in
thePLIST .

3. Add code to the installation scripts to copy the startup script from the examples hierarchy into the
system-wide startup scripts directory.

15.3.1. Disabling handling of system startup scripts

The automatic copying of con�g �les can be toggled by settingthe environment variable
PKG_RCD_SCRIPTSprior to package installation. Note that the scripts will bealways copied inside the
examples hierarchy,${PREFIX}/share/examples/rc.d/ , no matter what the value of this variable is.

15.4. System users and groups
If a package needs to create special users and/or groups during installation, it can do so by using the
pkginstall framework.

Users can be created by adding entries to thePKG_USERSvariable. Each entry has the following syntax:

user:group

Further speci�cation of user details may be done by setting per-user variables.PKG_UID. user is the
numeric UID for the user.PKG_GECOS.user is the user's description or comment.PKG_HOME.user is
the user's home directory, and defaults to/nonexistent if not speci�ed.PKG_SHELL.user is the
user's shell, and defaults to/sbin/nologin if not speci�ed.

Similarly, groups can be created by adding entries to thePKG_GROUPSvariable, whose syntax is:

group

The numeric GID of the group may be set by de�ningPKG_GID.group .

If a package needs to create the users and groups at an earlierstage, then it can setUSERGROUP_PHASE
to eitherconfigure ,build , or pre-install to indicate the phase before which the users and groups
are created. In this case, the numeric UIDs and GIDs of the created users and groups are automatically
hardcoded into the �nal installation scripts.

15.5. System shells
Packages that install system shells should register them inthe shell database,/etc/shells , to make
things easier to the administrator. This must be done from the installation scripts to keep binary packages
working on any system. pkginstall provides an easy way to accomplish this task.

When a package provides a shell interpreter, it has to set thePKG_SHELLvariable to its absolute �le
name. This will add some hooks to the installation scripts tohandle it. Consider the following example,
taken fromshells/zsh :

66

Chapter 15. The pkginstall framework

PKG_SHELL= ${PREFIX}/bin/zsh

15.5.1. Disabling shell registration

The automatic registration of shell interpreters can be disabled by the administrator by setting the
PKG_REGISTER_SHELLSenvironment variable toNO.

15.6. Fonts
Packages that install X11 fonts should update the database �les that index the fonts within each fonts
directory. This can easily be accomplished within the pkginstall framework.

When a package installs X11 fonts, it must list the directories in which fonts are installed in the
FONTS_DIRS.type variables, wheretype can be one of “ttf”, “type1” or “x11”. This will add hooks to
the installation scripts to run the appropriate commands toupdate the fonts database �les within each of
those directories. For convenience, if the directory path is relative, it is taken to be relative to the
package's installation pre�x. Consider the following example, taken fromfonts/dbz-ttf :

FONTS_DIRS.ttf= ${PREFIX}/share/fonts/X11/TTF

15.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disabled by the administrator by setting the
PKG_UPDATE_FONTS_DBenvironment variable toNO.

67

Chapter 16.

Options handling

Many packages have the ability to be built to support different sets of features.bsd.options.mk is a
framework in pkgsrc that provides generic handling of thoseoptions that determine different ways in
which the packages can be built. It's possible for the user tospecify exactly which sets of options will be
built into a package or to allow a set of global default options apply.

There are two broad classes of behaviors that one might want to control via options. One is whether
some particular feature is enabled in a program that will be built anyway, often by including or not
including a dependency on some other package. The other is whether or not an additional program will
be built as part of the package. Generally, it is better to make a split package for such additional
programs instead of using options, because it enables binary packages to be built which can then be
added separately. For example, the foo package might have minimal dependencies (those packages
without which foo doesn't make sense), and then the foo-gfoopackage might include the GTK frontend
program gfoo. This is better than including a gtk option to foo that adds gfoo, because either that option
is default, in which case binary users can't get foo without gfoo, or not default, in which case they can't
get gfoo. With split packages, they can install foo without having GTK, and later decide to install gfoo
(pulling in GTK at that time). This is an advantage to source users too, avoiding the need for rebuilds.

Plugins with widely varying dependencies should usually besplit instead of options.

It is often more work to maintain split packages, especiallyif the upstream package does not support
this. The decision of split vs. option should be made based onthe likelihood that users will want or
object to the various pieces, the size of the dependencies that are included, and the amount of work.

A further consideration is licensing. Non-free parts, or parts that depend on non-free dependencies
(especially plugins) should almost always be split if feasible.

16.1. Global default options
Global default options are listed inPKG_DEFAULT_OPTIONS, which is a list of the options that should be
built into every package if that option is supported. This variable should be set inmk.conf .

16.2. Converting packages to use bsd.options.mk

The following example shows howbsd.options.mk should be used by the hypothetical “wibble”
package, either in the packageMakefile , or in a �le, e.g.options.mk , that is included by the main
packageMakefile .

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql

68

Chapter 16. Options handling

PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP:ldap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \

"Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG _OPTIONS_VAR} instead."
.endif

.include "../../mk/bsd.options.mk"

Package-specific option-handling

###
FOO support
###
.if !empty(PKG_OPTIONS:Mwibble-foo)
CONFIGURE_ARGS+= --enable-foo
.endif

###
LDAP support
###
.if !empty(PKG_OPTIONS:Mldap)
. include "../../databases/openldap-client/buildlink3 .mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.op enldap-client}
.endif

###
database support
###
.if !empty(PKG_OPTIONS:Mmysql)
. include "../../mk/mysql.buildlink3.mk"
.endif
.if !empty(PKG_OPTIONS:Mpgsql)
. include "../../mk/pgsql.buildlink3.mk"
.endif

The �rst section contains the information about which buildoptions are supported by the package, and
any default options settings if needed.

1. PKG_OPTIONS_VARis the name of the make(1) variable that the user can set to override the default
options. It should be set to PKG_OPTIONS.pkgbase . Do not set it to
PKG_OPTIONS.${PKGBASE}, sincePKGBASEis not de�ned at the point where the options are
processed.

2. PKG_SUPPORTED_OPTIONSis a list of build options supported by the package.

69

Chapter 16. Options handling

3. PKG_OPTIONS_OPTIONAL_GROUPSis a list of names of groups of mutually exclusive options. The
options in each group are listed inPKG_OPTIONS_GROUP.groupname . The most speci�c setting of
any option from the group takes precedence over all other options in the group. Options from the
groups will be automatically added toPKG_SUPPORTED_OPTIONS.

4. PKG_OPTIONS_REQUIRED_GROUPSis like PKG_OPTIONS_OPTIONAL_GROUPS, but building the
packages will fail if no option from the group is selected.

5. PKG_OPTIONS_NONEMPTY_SETSis a list of names of sets of options. At least one option from each
set must be selected. The options in each set are listed inPKG_OPTIONS_SET.setname . Options
from the sets will be automatically added toPKG_SUPPORTED_OPTIONS. Building the package will
fail if no option from the set is selected.

6. PKG_SUGGESTED_OPTIONSis a list of build options which are enabled by default.

7. PKG_OPTIONS_LEGACY_VARSis a list of “USE_VARIABLE:option ” pairs that map legacy
mk.conf variables to their option counterparts. Pairs should be added with “+=” to keep the listing
of global legacy variables. A warning will be issued if the user uses a legacy variable.

8. PKG_OPTIONS_LEGACY_OPTSis a list of “old-option :new-option ” pairs that map options that
have been renamed to their new counterparts. Pairs should beadded with “+=” to keep the listing of
global legacy options. A warning will be issued if the user uses a legacy option.

9. PKG_LEGACY_OPTIONSis a list of options implied by deprecated variables used. This can be used
for cases that neitherPKG_OPTIONS_LEGACY_VARSnorPKG_OPTIONS_LEGACY_OPTScan handle,
e. g. whenPKG_OPTIONS_VARis renamed.

10.PKG_OPTIONS_DEPRECATED_WARNINGSis a list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modifyPKG_DEFAULT_OPTIONSor the variable named inPKG_OPTIONS_VAR.
These are strictly user-settable. To suggest a default set of options, usePKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VARmust be de�ned before includingbsd.options.mk . If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPSare de�ned (as can happen with platform-speci�c options if none of
them is supported on the current platform),PKG_OPTIONSis set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion ofbsd.options.mk , the variablePKG_OPTIONScontains the list of selected build
options, properly �ltered to remove unsupported and duplicate options.

The remaining sections contain the logic that is speci�c to each option. The correct way to check for an
option is to check whether it is listed inPKG_OPTIONS:

.if !empty(PKG_OPTIONS:M option)

16.3. Option Names
Options that enable similar features in different packages(like optional support for a library) should use
a common name in all packages that support it (like the name ofthe library). If another package already
has an option with the same meaning, use the same name.

70

Chapter 16. Options handling

Options that enable features speci�c to one package, where it's unlikely that another (unrelated) package
has the same (or a similar) optional feature, should use a name pre�xed withpkgname- .

If a group of related packages share an optional feature speci�c to that group, pre�x it with the name of
the “main” package (e. g.djbware-errno-hack).

For new options, add a line tomk/defaults/options.description . Lines have two �elds,
separated by tab. The �rst �eld is the option name, the secondits description. The description should be a
whole sentence (starting with an uppercase letter and ending with a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The �le is sorted by option names.

16.4. Determining the options of dependencies
When writingbuildlink3.mk �les, it is often necessary to list different dependencies based on the
options with which the package was built. For querying theseoptions, the �le
pkgsrc/mk/pkg-build-options.mk should be used. A typical example looks like this:

pkgbase := libpurple
.include "../../mk/pkg-build-options.mk"

.if !empty(PKG_BUILD_OPTIONS.libpurple:Mdbus)

...

.endif

Includingpkg-build-options.mk here will set the variablePKG_BUILD_OPTIONS.libpurple to
the build options of the libpurple package, which can then bequeried likePKG_OPTIONSin the
options.mk �le. See the �le pkg-build-options.mk for more details.

71

Chapter 17.

The build process

17.1. Introduction
This chapter gives a detailed description on how a package isbuilt. Building a package is separated into
differentphases(for examplefetch , build , install), all of which are described in the following
sections. Each phase is split into so-calledstages, which take the name of the containing phase, pre�xed
by one ofpre- , do- or post- . (Examples arepre-configure , post-build .) Most of the actual work
is done in thedo- * stages.

Never override the regular targets (likefetch), if you have to, override thedo- * ones instead.

The basic steps for building a program are always the same. First the program's source (dist�le) must be
brought to the local system and then extracted. After any pkgsrc-speci�c patches to compile properly are
applied, the software can be con�gured, then built (usuallyby compiling), and �nally the generated
binaries, etc. can be put into place on the system.

To get more details about what is happening at each step, you can set thePKG_VERBOSEvariable, or the
PATCH_DEBUGvariable if you are just interested in more details about thepatchstep.

17.2. Program location
Before outlining the process performed by the NetBSD package system in the next section, here's a brief
discussion on where programs are installed, and which variables in�uence this.

The automatic variablePREFIX indicates where all �les of the �nal program shall be installed. It is
usually set toLOCALBASE(/usr/pkg), or CROSSBASEfor pkgs in thecross category. The value of
PREFIX needs to be put into the various places in the program's source where paths to these �les are
encoded. SeeSection 11.3andSection 19.3.1for more details.

When choosing which of these variables to use, follow the following rules:

• PREFIX always points to the location where the current pkg will be installed. When referring to a
pkg's own installation path, use “${PREFIX}”.

• LOCALBASEis where all non-X11 pkgs are installed. If you need to construct a -I or -L argument to the
compiler to �nd includes and libraries installed by anothernon-X11 pkg, use “${LOCALBASE}”.
The nameLOCALBASEstems from FreeBSD, which installed all packages in/usr/local . As pkgsrc
leaves/usr/local for the system administrator, this variable is a misnomer.

• X11BASEis where the actual X11 distribution (from xsrc, etc.) is installed. When looking forstandard
X11 includes (not those installed by a package), use “${X11BASE}”.

• X11-based packages using imake must setUSE_IMAKEto be installed correctly underLOCALBASE.

72

Chapter 17. The build process

• Within ${PREFIX} , packages should install �les according to hier(7), with the exception that manual
pages go into${PREFIX}/man , not${PREFIX}/share/man .

17.3. Directories used during the build process
When building a package, various directories are used to store source �les, temporary �les,
pkgsrc-internal �les, and so on. These directories are explained here.

Some of the directory variables contain relative pathnames. There are two common base directories for
these relative directories:PKGSRCDIR/PKGPATHis used for directories that are pkgsrc-speci�c.WRKSRC

is used for directories inside the package itself.

PKGSRCDIR

This is an absolute pathname that points to the pkgsrc root directory. Generally, you don't need it.

PKGDIR

This is an absolute pathname that points to the current package.

PKGPATH

This is a pathname relative toPKGSRCDIRthat points to the current package.

WRKDIR

This is an absolute pathname pointing to the directory whereall work takes place. The dist�les are
extracted to this directory. It also contains temporary directories and log �les used by the various
pkgsrc frameworks, likebuildlink or thewrappers.

WRKSRC

This is an absolute pathname pointing to the directory wherethe dist�les are extracted. It is usually
a direct subdirectory ofWRKDIR, and often it's the only directory entry that isn't hidden. This
variable may be changed by a packageMakefile .

TheCREATE_WRKDIR_SYMLINKde�nition takes either the valueyesor noand defaults tono. It indicates
whether a symbolic link to theWRKDIRis to be created in the pkgsrc entry's directory. If users would like
to have their pkgsrc trees behave in a read-only manner, thenthe value ofCREATE_WRKDIR_SYMLINK

should be set tono.

17.4. Running a phase
You can run a particular phase by typingmake phase, wherephaseis the name of the phase. This will
automatically run all phases that are required for this phase. The default phase isbuild , that is, when
you runmake without parameters in a package directory, the package willbe built, but not installed.

73

Chapter 17. The build process

17.5. The fetch phase
The �rst step in building a package is to fetch the distribution �les (dist�les) from the sites that are
providing them. This is the task of thefetchphase.

17.5.1. What to fetch and where to get it from

In simple cases,MASTER_SITESde�nes all URLs from where the dist�le, whose name is derivedfrom
theDISTNAMEvariable, is fetched. The more complicated cases are described below.

The variableDISTFILES speci�es the list of dist�les that have to be fetched. Its value defaults to
${DEFAULT_DISTFILES} and its value is${DISTNAME}${EXTRACT_SUFX} , so that most packages
don't need to de�ne it at all.EXTRACT_SUFXis .tar.gz by default, but can be changed freely. Note that
if your package requires additional dist�les to the defaultone, you cannot just append the additional
�lenames using the+= operator, but you have write for example:

DISTFILES= ${DEFAULT_DISTFILES} additional-files.tar. gz

Each dist�le is fetched from a list of sites, usuallyMASTER_SITES. If the package has multiple
DISTFILES or multiplePATCHFILESfrom different sites, you can setSITES. distfile to the list of
URLs where the �ledistfile (including the suf�x) can be found.

DISTFILES= ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES.foo-file.tar.gz= \
http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/

When actually fetching the dist�les, each item fromMASTER_SITESor SITES. * gets the name of each
dist�le appended to it, without an intermediate slash. Therefore, all site values have to end with a slash or
other separator character. This allows for example to setMASTER_SITESto a URL of a CGI script that
gets the name of the dist�le as a parameter. In this case, the de�nition would look like:

MASTER_SITES= http://www.example.com/download.cgi?fi le=

The exception to this rule are URLs starting with a dash. In that case the URL is taken as is, fetched and
the result stored under the name of the dist�le. You can use this style for the case when the download
URL style does not match the above common case. For example, if permanent download URL is a
redirector to the real download URL, or the download �le nameis offered by an HTTP
Content-Disposition header. In the following example,foo-1.0.0.tar.gz will be created instead of
the defaultv1.0.0.tar.gz .

DISTNAME= foo-1.0.0
MASTER_SITES= -http://www.example.com/archive/v1.0.0 .tar.gz

There are some prede�ned values forMASTER_SITES, which can be used in packages. The names of the
variables should speak for themselves.

${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}
${MASTER_SITE_DEBIAN}

74

Chapter 17. The build process

${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GENTOO}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_HASKELL_HACKAGE}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_KDE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_MOZILLA_ALL}
${MASTER_SITE_MOZILLA_ESR}
${MASTER_SITE_MYSQL}
${MASTER_SITE_NETLIB}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_OSDN}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_PGSQL}
${MASTER_SITE_RUBYGEMS}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}
${MASTER_SITE_XORG}

Some explanations for the less self-explaining ones:MASTER_SITE_BACKUPcontains backup sites for
packages that are maintained in ftp://ftp.NetBSD.org/pub/pkgsrc/dist�les/${DIST_SUBDIR}.
MASTER_SITE_LOCALcontains local package source distributions that are maintained in
ftp://ftp.NetBSD.org/pub/pkgsrc/dist�les/LOCAL_PORTS/.

If you choose one of these prede�ned sites, you may want to specify a subdirectory of that site. Since
these macros may expand to more than one actual site, youmustuse the following construct to specify a
subdirectory:

MASTER_SITES= ${MASTER_SITE_GNU:=subdirectory/name/}
MASTER_SITES= ${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

17.5.2. How are the �les fetched?

Thefetchphase makes sure that all the dist�les exist in a local directory (DISTDIR , which can be set by
the pkgsrc user). If the �les do not exist, they are fetched using commands of the form

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FET CH_AFTER_ARGS}

where${site} varies through several possibilities in turn: �rst,MASTER_SITE_OVERRIDEis tried, then
the sites speci�ed in eitherSITES.file if de�ned, elseMASTER_SITESor PATCH_SITES, as applies,
then �nally the value ofMASTER_SITE_BACKUP. The order of all except the �rst and the last can be

75

Chapter 17. The build process

optionally sorted by the user, via setting eitherMASTER_SORT_RANDOM, andMASTER_SORT_AWKor
MASTER_SORT_REGEX.

The speci�c command and arguments used depend on theFETCH_USINGparameter. The example above
is for FETCH_USING=custom.

The dist�les mirror run by the NetBSD Foundation uses themirror-dist�les target to mirror the dist�les,
if they are freely distributable. Packages settingNO_SRC_ON_FTP(usually to “${RESTRICTED}”) will
not have their dist�les mirrored.

17.6. The checksum phase
After the dist�le(s) are fetched, their checksum is generated and compared with the checksums stored in
the distinfo �le. If the checksums don't match, the build is aborted. This is to ensure the same dist�le is
used for building, and that the dist�le wasn't changed, e.g.by some malign force, deliberately changed
dist�les on the master distribution site or network lossage.

17.7. The extract phase
When the dist�les are present on the local system, they need to be extracted, as they usually come in the
form of some compressed archive format.

By default, allDISTFILES are extracted. If you only need some of them, you can set theEXTRACT_ONLY

variable to the list of those �les.

Extracting the �les is usually done by a little program,mk/extract/extract , which already knows
how to extract various archive formats, so most likely you will not need to change anything here. But if
you need, the following variables may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}

Use these variables to override the default options for an extract command, which are de�ned in
mk/extract/extract .

EXTRACT_USING

This variable can be set tobsdtar , gtar , nbtar (which is the default value),pax , or an absolute
pathname pointing to the command with which tar archives should be extracted. It is preferred to
choose bsdtar over gtar if NetBSD's pax-as-tar is not good enough.

If the extract program doesn't serve your needs, you can also override theEXTRACT_CMDvariable,
which holds the command used for extracting the �les. This command is executed in the${WRKSRC}
directory. During execution of this command, the shell variableextract_file holds the absolute
pathname of the �le that is going to be extracted.

And if that still does not suf�ce, you can override thedo-extract target in the package Make�le.

76

Chapter 17. The build process

17.8. The patch phase
After extraction, all the patches named by thePATCHFILES, those present in the patches subdirectory of
the package as well as in $LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patch�les ending in.Z or .gz are uncompressed
before they are applied, �les ending in.orig or .rej are ignored. Any special options to patch(1) can
be handed inPATCH_DIST_ARGS. SeeSection 11.3for more details.

By default patch(1) is given special args to make it fail if the patches apply with some lines of fuzz.
Please �x (regen) the patches so that they apply cleanly. Therationale behind this is that patches that
don't apply cleanly may end up being applied in the wrong place, and cause severe harm there.

17.9. The tools phase
This is covered inChapter 18.

17.10. The wrapper phase
This phase creates wrapper programs for the compilers and linkers. The following variables can be used
to tweak the wrappers.

ECHO_WRAPPER_MSG

The command used to print progress messages. Does nothing bydefault. Set to${ECHO} to see the
progress messages.

WRAPPER_DEBUG

This variable can be set toyes (default) orno, depending on whether you want additional
information in the wrapper log �le.

WRAPPER_UPDATE_CACHE

This variable can be set toyes or no, depending on whether the wrapper should use its cache,
which will improve the speed. The default value isyes , but is forced tono if the platform does not
support it.

WRAPPER_REORDER_CMDS

A list of reordering commands. A reordering command has the form reorder:l: lib1 : lib2 . It
ensures that that-l lib1 occurs before-l lib2 .

WRAPPER_TRANSFORM_CMDS

A list of transformation commands. [TODO: investigate further]

17.11. The con�gure phase
Most pieces of software need information on the header �les,system calls, and library routines which are
available on the platform they run on. The process of determining this information is known as

77

Chapter 17. The build process

con�guration, and is usually automated. In most cases, a script is supplied with the dist�les, and its
invocation results in generation of header �les, Make�les,etc.

If the package contains a con�gure script, this can be invoked by settingHAS_CONFIGUREto “yes”. If
the con�gure script is a GNU autoconf script, you should setGNU_CONFIGUREto “yes” instead. What
happens in thecon�gurephase is roughly:

.for d in ${CONFIGURE_DIRS}
cd ${WRKSRC} \
&& cd ${d} \
&& env ${CONFIGURE_ENV} ${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}

.endfor

CONFIGURE_DIRS(default: “.”) is a list of pathnames relative toWRKSRC. In each of these directories,
the con�gure script is run with the environmentCONFIGURE_ENVand argumentsCONFIGURE_ARGS.
The variablesCONFIGURE_ENV, CONFIGURE_SCRIPT(default: “./con�gure”) andCONFIGURE_ARGS

may all be changed by the package.

If the program uses the Perl way of con�guration (mainly Perlmodules, but not only), i.e. a �le called
Makefile.PL , it should include../../lang/perl5/module.mk . To set any parameter for
Makefile.PL use theMAKE_PARAMSvariable (e.g.,MAKE_PARAMS+=foo=bar

If the program uses anImakefile for con�guration, the appropriate steps can be invoked by setting
USE_IMAKEto “yes”. If you only need xmkmf, add it toUSE_TOOLS. You can add variables to xmkmf's
environment by adding them to theSCRIPTS_ENVvariable.

If the program usescmake for con�guration, the appropriate steps can be invoked by setting USE_CMAKE

to “yes”. You can add variables to cmake's environment by adding them to theCONFIGURE_ENVvariable
and arguments to cmake by adding them to theCMAKE_ARGSvariable. The top directory argument is
given by theCMAKE_ARG_PATHvariable, that defaults to “.” (relative toCONFIGURE_DIRS)

If there is no con�gure step at all, setNO_CONFIGUREto “yes”.

17.12. The build phase
For building a package, a rough equivalent of the following code is executed.

.for d in ${BUILD_DIRS}
cd ${WRKSRC} \
&& cd ${d} \
&& env ${MAKE_ENV} \

${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
-f ${MAKE_FILE} \
${BUILD_TARGET}

.endfor

BUILD_DIRS (default: “.”) is a list of pathnames relative toWRKSRC. In each of these directories,
MAKE_PROGRAMis run with the environmentMAKE_ENVand argumentsBUILD_MAKE_FLAGS. The
variablesMAKE_ENV, BUILD_MAKE_FLAGS, MAKE_FILE andBUILD_TARGETmay all be changed by the
package.

The default value ofMAKE_PROGRAMis “gmake” if USE_TOOLScontains “gmake”, “make” otherwise.
The default value ofMAKE_FILE is “Make�le”, and BUILD_TARGETdefaults to “all”.

78

Chapter 17. The build process

If there is no build step at all, setNO_BUILDto “yes”.

17.13. The test phase
[TODO]

17.14. The install phase
Once the build stage has completed, the �nal step is to install the software in public directories, so users
can access the programs and �les.

In theinstall phase, a rough equivalent of the following code is executed.Additionally, before and after
this code, much magic is performed to do consistency checks,registering the package, and so on.

.for d in ${INSTALL_DIRS}
cd ${WRKSRC} \
&& cd ${d} \
&& env ${MAKE_ENV} \

${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \
-f ${MAKE_FILE} \
${INSTALL_TARGET}

.endfor

The variable's meanings are analogous to the ones in thebuild phase.INSTALL_DIRS defaults to
BUILD_DIRS . INSTALL_TARGETis “install” by default, plus “install.man” ifUSE_IMAKEis de�ned and
NO_INSTALL_MANPAGESis not de�ned.

In theinstall phase, the following variables are useful. They are all variations of the install(1) command
that have the owner, group and permissions preset.INSTALL is the plain install command. The
specialized variants, together with their intended use, are:

INSTALL_PROGRAM_DIR

directories that contain binaries

INSTALL_SCRIPT_DIR

directories that contain scripts

INSTALL_LIB_DIR

directories that contain shared and static libraries

INSTALL_DATA_DIR

directories that contain data �les

INSTALL_MAN_DIR

directories that contain man pages

79

Chapter 17. The build process

INSTALL_GAME_DIR

directories that contain data �les for games

INSTALL_PROGRAM

binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

binaries that cannot be stripped

INSTALL_GAME

game binaries

INSTALL_LIB

shared and static libraries

INSTALL_DATA

data �les

INSTALL_GAME_DATA

data �les for games

INSTALL_MAN

man pages

Some other variables are:

INSTALL_UNSTRIPPED

If set toyes , do not run strip(1) when installing binaries. Any debugging sections and symbols
present in binaries will be preserved.

INSTALLATION_DIRS

A list of directories relative toPREFIX that are created by pkgsrc at the beginning of theinstall
phase. The package is supposed to create all needed directories itself before installing �les to it and
list all other directories here.

In the rare cases that a package shouldn't install anything,setNO_INSTALL to “yes”. This is mostly
relevant for packages in theregress category.

17.15. The package phase
Once the install stage has completed, a binary package of theinstalled �les can be built. These binary
packages can be used for quick installation without previous compilation, e.g. by themake bin-install or
by usingpkg_add.

80

Chapter 17. The build process

By default, the binary packages are created in${PACKAGES}/All and symlinks are created in
${PACKAGES}/ category , one for each category in theCATEGORIESvariable.PACKAGESdefaults to
pkgsrc/packages .

17.16. Cleaning up
Once you're �nished with a package, you can clean the work directory by runningmake clean. If you
want to clean the work directories of all dependencies too, usemake clean-depends.

17.17. Other helpful targets

pre/post-*

For any of the main targets described in the previous section, two auxiliary targets exist with “pre-”
and “post-” used as a pre�x for the main target's name. These targets are invoked before and after
the main target is called, allowing extra con�guration or installation steps be performed from a
package's Make�le, for example, which a program's con�gurescript or install target omitted.

do-*

Should one of the main targets do the wrong thing, and should there be no variable to �x this, you
can rede�ne it with the do-* target. (Note that rede�ning thetarget itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won't be called anymore, etc.) You will not usually need
to do this.

reinstall

If you did amake install and you noticed some �le was not installed properly, you can repeat the
installation with this target, which will ignore the “already installed” �ag.

This is the default value ofDEPENDS_TARGETexcept in the case ofmake updateandmake
package, where the defaults are “package” and “update”, respectively.

deinstall

This target does a pkg_delete(1) in the current directory, effectively de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE

Add a "-v" to the pkg_delete(1) command.

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given package. This can be used to remove
any packages that may have been pulled in by a given package, e.g. if make deinstall
DEINSTALLDEPENDS=1 is done inpkgsrc/x11/kde , this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

81

Chapter 17. The build process

bin-install

Install a binary package from local disk and via FTP from a list of sites (see theBINPKG_SITES

variable), and do amake packageif no binary package is available anywhere. The arguments given
to pkg_addcan be set viaBIN_INSTALL_FLAGS e.g., to do verbose operation, etc.

install-clean

This target removes the state �les for the "install" and later phases so that the "install" target may be
re-invoked. This can be used after editing the PLIST to install the package without rebuilding it.

build-clean

This target removes the state �les for the "build" and later phases so that the "build" target may be
re-invoked.

update

This target causes the current package to be updated to the latest version. The package and all
depending packages �rst get de-installed, then current versions of the corresponding packages get
compiled and installed. This is similar to manually noting which packages are currently installed,
then performing a series ofmake deinstallandmake install (or whateverUPDATE_TARGETis set
to) for these packages.

You can use the “update” target to resume package updating incase a previousmake updatewas
interrupted for some reason. However, in this case, make sure you don't callmake cleanor
otherwise remove the list of dependent packages inWRKDIR. Otherwise, you lose the ability to
automatically update the current package along with the dependent packages you have installed.

Resuming an interruptedmake updatewill only work as long as the package tree remains
unchanged. If the source code for one of the packages to be updated has been changed, resuming
make updatewill most certainly fail!

The following variables can be used either on the command line or inmk.conf to alter the
behaviour ofmake update:

UPDATE_TARGET

Install target to recursively use for the updated package and the dependent packages. Defaults
to DEPENDS_TARGETif set, “install” otherwise formake update. Other good targets are
“package” or “bin-install”. Do not set this to “update” or you will get stuck in an endless loop!

NOCLEAN

Don't clean up after updating. Useful if you want to leave thework sources of the updated
packages around for inspection or other purposes. Be sure you eventually clean up the source
tree (see the “clean-update” target below) or you may run into troubles with old source code
still lying around on your nextmakeor make update.

REINSTALL

Deinstall each package before installing (makingDEPENDS_TARGET). This may be necessary
if the “clean-update” target (see below) was called after interrupting a runningmake update.

82

Chapter 17. The build process

DEPENDS_TARGET

Allows you to disable recursion and hardcode the target for packages. The default is “update”
for the update target, facilitating a recursive update of prerequisite packages. Only set
DEPENDS_TARGETif you want to disable recursive updates. UseUPDATE_TARGETinstead to
just set a speci�c target for each package to be installed during make update(see above).

clean-update

Clean the source tree for all packages that would get updatedif make updatewas called from the
current directory. This target should not be used if the current package (or any of its depending
packages) have already been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this targetbeforethe �rst time you
runmake updateand only if you have a dirty package tree (e.g., if you usedNOCLEAN).

If you are unsure about whether your tree is clean, you can either perform amake cleanat the top
of the tree, or use the following sequence of commands from the directory of the package you want
to update (beforerunningmake updatefor the �rst time, otherwise you lose all the packages you
wanted to update!):

make clean-update
make clean CLEANDEPENDS=YES
make update

The following variables can be used either on the command line or inmk.conf to alter the
behaviour ofmake clean-update:

CLEAR_DIRLIST

After make clean, do not reconstruct the list of directories to update for this package. Only use
this if make updatesuccessfully installed all packages you wanted to update. Normally, this is
done automatically onmake update, but may have been suppressed by theNOCLEANvariable
(see above).

replace

Update the installation of the current package. This differs from update in that it does not replace
dependent packages. You will need to installpkgtools/pkg_tarup for this target to work.

Be careful when using this target!There are no guarantees that dependent packages will still work,
in particular they will most certainly break if youmake replacea library package whose shared
library major version changed between your installed version and the new one. For this reason, this
target is not of�cially supported and only recommended for advanced users.

info

This target invokes pkg_info(1) for the current package. You can use this to check which version of
a package is installed.

83

Chapter 17. The build process

index

This is a top-level command, i.e. it should be used in thepkgsrc directory. It creates a database of
all packages in the local pkgsrc tree, including dependencies, comment, maintainer, and some other
useful information. Individual entries are created by running make describein the packages'
directories. This index �le is saved aspkgsrc/INDEX . It can be displayed in verbose format by
runningmake print-index. You can search in it withmake search key=something . You can
extract a list of all packages that depend on a particular oneby runningmake show-deps
PKG=somepackage .

Running this command takes a very long time, some hours even on fast machines!

readme

This target generates aREADME.html �le, which can be viewed using a browser such as
www/firefox or www/links . The generated �les contain references to any packages which are in
thePACKAGESdirectory on the local host. The generated �les can be made torefer to URLs based
on FTP_PKG_URL_HOSTandFTP_PKG_URL_DIR. For example, if I wanted to generate
README.html �les which pointed to binary packages on the local machine, in the directory
/usr/packages , setFTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages . The${PACKAGES}directory and its subdirectories will be
searched for all the binary packages.

The target can be run at the toplevel or in category directories, in which case it descends recursively.

readme-all

This is a top-level command, run it inpkgsrc . Use this target to create a �leREADME-all.html

which contains a list of all packages currently available inthe NetBSD Packages Collection,
together with the category they belong to and a short description. This �le is compiled from the
pkgsrc/ * /README.html �les, so be sure to run thisafter a make readme.

cdrom-readme

This is very much the same as the “readme” target (see above),but is to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also producesREADME.html �les, and can be
made to refer to URLs based onCDROM_PKG_URL_HOSTandCDROM_PKG_URL_DIR.

show-dist�les

This target shows which dist�les and patch�les are needed tobuild the package (ALLFILES , which
contains allDISTFILES andPATCHFILES, but notpatches/ *).

show-downlevel

This target shows nothing if the package is not installed. Ifa version of this package is installed, but
is not the version provided in this version of pkgsrc, then a warning message is displayed. This
target can be used to show which of your installed packages are downlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir

This target shows the directory in the pkgsrc hierarchy fromwhich the package can be built and
installed. This may not be the same directory as the one from which the package was installed. This
target is intended to be used by people who may wish to upgrademany packages on a single host,

84

Chapter 17. The build process

and can be invoked from the top-level pkgsrc Make�le by usingthe “show-host-speci�c-pkgs”
target.

show-installed-depends

This target shows which installed packages match the current package'sDEPENDS. Useful if out of
date dependencies are causing build problems.

print-build-depends-list

This target shows the list of packages that the current package depends on for building.

print-run-depends-list

This target shows the list of packages that the current package depends on for running.

check-shlibs

After a package is installed, check all its binaries and (on ELF platforms) shared libraries to see if
they �nd the shared libs they need. Run by default ifPKG_DEVELOPERis set inmk.conf .

print-PLIST

After a “make install” from a new or upgraded pkg, this printsout an attempt to generate a new
PLIST from a�nd -newer work/.extract_done. An attempt is made to care for shared libs etc., but
it is stronglyrecommended to review the result before putting it intoPLIST . On upgrades, it's
useful to diff the output of this command against an already existingPLIST �le.

If the package installs �les via tar(1) or other methods thatdon't update �le access times, be sure to
add these �les manually to yourPLIST , as the “�nd -newer” command used by this target won't
catch them!

SeeSection 13.3for more information on this target.

bulk-package

Used to do bulk builds. If an appropriate binary package already exists, no action is taken. If not,
this target will compile, install and package it (and its depends, ifPKG_DEPENDSis set properly. See
Chapter 7). After creating the binary package, the sources, the just-installed package and its
required packages are removed, preserving free disk space.

Beware that this target may deinstall all packages installed on a system!

bulk-install

Used during bulk-installs to install required packages. Ifan up-to-date binary package is available,
it will be installed via pkg_add(1). If not,make bulk-packagewill be executed, but the installed
binary won't be removed.

A binary package is considered “up-to-date” to be installedvia pkg_add(1) if:

• None of the package's �les (Makefile , ...) were modi�ed since it was built.

• None of the package's required (binary) packages were modi�ed since it was built.

Beware that this target may deinstall all packages installed on a system!

85

Chapter 18.

Tools needed for building or
running

TheUSE_TOOLSde�nition is used both internally by pkgsrc and also for individual packages to de�ne
what commands are needed for building a package (likeBUILD_DEPENDS) or for later run-time of an
installed packaged (such asDEPENDS). If the native system provides an adequate tool, then in many
cases, a pkgsrc package will not be used.

When building a package, the replacement tools are made available in a directory (as symlinks or
wrapper scripts) that is early in the executable search path. Just like the buildlink system, this helps with
consistent builds.

A tool may be needed to help build a speci�c package. For example, perl, GNU make (gmake) or yacc
may be needed.

Also a tool may be needed, for example, because the native system's supplied tool may be inef�cient for
building a package with pkgsrc. For example, a package may need GNU awk, bison (instead of yacc) or
a better sed.

The tools used by a package can be listed by runningmake show-tools.

18.1. Tools for pkgsrc builds
The default set of tools used by pkgsrc is de�ned inbsd.pkg.mk . This includes standard Unix tools,
such as:cat, awk, chmod, test, and so on. These can be seen by running:make show-var
VARNAME=USE_TOOLS .

If a package needs a speci�c program to build then theUSE_TOOLSvariable can be used to de�ne the
tools needed.

18.2. Tools needed by packages
In the following examples, the :run means that it is needed atrun-time (and becomes a DEPENDS). The
default is a build dependency which can be set with :build. (So in this example, it is the same as
gmake:build and pkg-con�g:build.)

USE_TOOLS+= gmake perl:run pkg-config

When using the tools framework, aTOOLS_PATH.foo variable is de�ned which contains the full path to
the appropriate tool. For example,TOOLS_PATH.bash could be “/bin/bash” on Linux systems.

If you always need a pkgsrc version of the tool at run-time, then just useDEPENDSinstead.

86

Chapter 18. Tools needed for building or running

18.3. Tools provided by platforms
When improving or porting pkgsrc to a new platform, have a look at (or create) the corresponding
platform speci�c make �le fragment underpkgsrc/mk/tools/tools.${OPSYS}.mk which de�nes
the name of the common tools. For example:

.if exists(/usr/bin/bzcat)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzcat
.elif exists(/usr/bin/bzip2)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzip2 -cd
.endif

TOOLS_PLATFORM.true?= true # shell builtin

87

Chapter 19.

Making your package work

19.1. General operation
One appealing feature of pkgsrc is that it runs on many different platforms. As a result, it is important to
ensure, where possible, that packages in pkgsrc are portable. This chapter mentions some particular
details you should pay attention to while working on pkgsrc.

19.1.1. How to pull in user-settable variables from mk.conf

The pkgsrc user can con�gure pkgsrc by overriding several variables in the �le pointed to byMAKECONF,
which ismk.conf by default. When you want to use those variables in the preprocessor directives of
make(1) (for example.if or .for), you need to include the �le../../mk/bsd.prefs.mk before,
which in turn loads the user preferences.

But note that some variables may not be completely de�ned after ../../mk/bsd.prefs.mk has been
included, as they may contain references to variables that are not yet de�ned. In shell commands (the
lines inMakefile that are indented with a tab) this is no problem, since variables are only expanded
when they are used. But in the preprocessor directives mentioned above and in dependency lines (of the
form target: dependencies) the variables are expanded at load time.

Note: To check whether a variable can be used at load time, run pkglint -Wall on your package.

19.1.2. User interaction

Occasionally, packages require interaction from the user,and this can be in a number of ways:

• When fetching the dist�les, some packages require user interaction such as entering
username/password or accepting a license on a web page.

• When extracting the dist�les, some packages may ask for passwords.

• help to con�gure the package before it is built

• help during the build process

• help during the installation of a package

A package can set theINTERACTIVE_STAGEvariable to de�ne which stages need interaction. This
should be done in the package'sMakefile , e.g.:

INTERACTIVE_STAGE= configure install

88

Chapter 19. Making your package work

The user can then decide to skip this package by setting theBATCHvariable. Packages that require
interaction are also excluded from bulk builds.

19.1.3. Handling licenses

Authors of software can choose the licence under which software can be copied. The Free Software
Foundation has declared some licenses "Free", and the Open Source Initiative has a de�nition of "Open
Source".

By default, pkgsrc allows packages with Free or Open Source licenses to be built. To allow packages
with other licenses to be built as well, the pkgsrc user needsto add these licenses to the
ACCEPTABLE_LICENSESvariable inmk.conf . Note that this variable only affects which packages may
bebuilt, while the license terms often also restrict the actual use of the package and its redistribution.

One might want to only install packages with a BSD license, orthe GPL, and not the other. The free
licenses are added to the defaultACCEPTABLE_LICENSESvariable. The pkgsrc user can override the
default by setting theACCEPTABLE_LICENSESvariable with "=" instead of "+=". The licenses accepted
by default are de�ned in theDEFAULT_ACCEPTABLE_LICENSESvariable in the �le
pkgsrc/mk/license.mk .

The license tag mechanism is intended to address copyright-related issues surrounding building,
installing and using a package, and not to address redistribution issues (seeRESTRICTEDand
NO_SRC_ON_FTP, etc.). Packages with redistribution restrictions shouldset these tags.

Denoting that a package may be copied according to a particular license is done by placing the license in
pkgsrc/licenses and setting theLICENSE variable to a string identifying the license, e.g. in
graphics/xv :

LICENSE= xv-license

When trying to build, the user will get a notice that the package is covered by a license which has not
been placed in theACCEPTABLE_LICENSESvariable:

% make
===> xv-3.10anb9 has an unacceptable license: xv-license.
===> To view the license, enter "/usr/bin/make show-licens e".
===> To indicate acceptance, add this line to your /etc/mk.c onf:
===> ACCEPTABLE_LICENSES+=xv-license

*** Error code 1

The license can be viewed withmake show-license, and if the user so chooses, the line printed above
can be added tomk.conf to convey to pkgsrc that it should not in the future fail because of that license:

ACCEPTABLE_LICENSES+=xv-license

The use ofLICENSE=shareware , LICENSE=no-commercial-use , and similar language is deprecated
because it does not crisply refer to a particular license text. Another problem with such usage is that it
does not enable a user to tell pkgsrc to proceed for a single package without also telling pkgsrc to
proceed for all packages with that tag.

89

Chapter 19. Making your package work

19.1.3.1. Adding a package with a new license

When adding a package with a new license, the following stepsare required:

1. Check whether the license quali�es as Free or Open Source by referencing Various Licenses and
Comments about Them (http://www.gnu.org/licenses/license-list.en.html) and Licenses by Name |
Open Source Initiative (http://opensource.org/licenses/alphabetical). If this is the case, the �lename
in pkgsrc/licenses/ does not need the-license suf�x, and the license name should be added
to:

• DEFAULT_ACCEPTABLE_LICENSES inpkgsrc/mk/license.mk

• default_acceptable_licenses inpkgsrc/pkgtools/pkg_install/files/lib/license.c

2. The license text should be added topkgsrc/licenses for displaying. A list of known licenses can
be seen in this directory.

19.1.3.2. Change to the license

When the license changes (in a way other than formatting), make sure that the new license has a different
name (e.g., append the version number if it exists, or the date). Just because a user told pkgsrc to build
programs under a previous version of a license does not mean that pkgsrc should build programs under
the new licenses. The higher-level point is that pkgsrc doesnot evaluate licenses for reasonableness; the
only test is a mechanistic test of whether a particular text has been approved by either of two bodies (FSF
or OSI).

19.1.4. Restricted packages

Some licenses restrict how software may be re-distributed.By declaring the restrictions, package tools
can automatically refrain from e.g. placing binary packages on FTP sites.

There are four possible restrictions, which are the cross product of sources (dist�les) and binaries not
being placed on FTP sites and CD-ROMs. Because this is rarelythe exact language in any license, and
because non-Free licenses tend to be different from each other, pkgsrc adopts a de�nition of FTP and
CD-ROM. "FTP" means making the source or binary �le available over the Internet at no charge.
"CD-ROM" means making the source or binary available on somekind of media, together with other
source and binary packages, which is sold for a distributioncharge.

In order to encode these restrictions, the package system de�nes �ve make variables that can be set to
note these restrictions:

• RESTRICTED

This variable should be set whenever a restriction exists (regardless of its kind). Set this variable to a
string containing the reason for the restriction. It shouldbe understood that those wanting to
understand the restriction will have to read the license, and perhaps seek advice of counsel.

• NO_BIN_ON_CDROM

90

Chapter 19. Making your package work

Binaries may not be placed on CD-ROM containing other binarypackages, for which a distribution
charge may be made. In this case, set this variable to${RESTRICTED} .

• NO_BIN_ON_FTP

Binaries may not made available on the Internet without charge. In this case, set this variable to
${RESTRICTED} . If this variable is set, binary packages will not be included on ftp.NetBSD.org.

• NO_SRC_ON_CDROM

Dist�les may not be placed on CD-ROM, together with other dist�les, for which a fee may be charged.
In this case, set this variable to${RESTRICTED} .

• NO_SRC_ON_FTP

Dist�les may not made available via FTP at no charge. In this case, set this variable to
${RESTRICTED} . If this variable is set, the dist�le(s) will not be mirroredon ftp.NetBSD.org.

Please note that packages will be removed from pkgsrc when the dist�les are not distributable and cannot
be obtained for a period of one full quarter branch. Packageswith manual/interactive fetch must have a
maintainer and it is his/her responsibility to ensure this.

19.1.5. Handling dependencies

Your package may depend on some other package being present -and there are various ways of
expressing this dependency. pkgsrc supports theBUILD_DEPENDSandDEPENDSde�nitions, the
USE_TOOLSde�nition, as well as dependencies viabuildlink3.mk , which is the preferred way to
handle dependencies, and which uses the variables named above. SeeChapter 14for more information.

The basic difference between the two variables is as follows: TheDEPENDSde�nition registers that
pre-requisite in the binary package so it will be pulled in when the binary package is later installed,
whilst theBUILD_DEPENDSde�nition does not, marking a dependency that is only neededfor building
the package.

This means that if you only need a package present whilst you are building, it should be noted as a
BUILD_DEPENDS.

The format for aBUILD_DEPENDSand aDEPENDSde�nition is:

<pre-req-package-name>:../../<category>/<pre-req-pa ckage>

Please note that the “pre-req-package-name” may include any of the wildcard version numbers
recognized by pkg_info(1).

1. If your package needs another package's binaries or libraries to build and run, and if that package
has abuildlink3.mk �le available, use it:

.include "../../graphics/jpeg/buildlink3.mk"

2. If your package needs another package's binaries or libraries only for building, and if that package
has abuildlink3.mk �le available, use it:

.include "../../graphics/jpeg/buildlink3.mk"

but setBUILDLINK_DEPMETHOD.jpeg ?=build to make it a build dependency only. This case is
rather rare.

91

Chapter 19. Making your package work

3. If your package needs binaries from another package to build, use theBUILD_DEPENDSde�nition:

BUILD_DEPENDS+= scons-[0-9] * :../../devel/scons

4. If your package needs a library with which to link and thereis nobuildlink3.mk �le available,
create one. UsingDEPENDSwon't be suf�cient because the include �les and libraries will be hidden
from the compiler.

5. If your package needs some executable to be able to run correctly and if there's nobuildlink3.mk

�le, this is speci�ed using theDEPENDSvariable. Theprint/lyx package needs to be able to
execute the latex binary from the tex-latex-bin package when it runs, and that is speci�ed:

DEPENDS+= tex-latex-bin-[0-9] * :../../print/tex-latex-bin

6. You can use wildcards in package dependencies. Note that such wildcard dependencies are retained
when creating binary packages. The dependency is checked when installing the binary package and
any package which matches the pattern will be used. Wildcarddependencies should be used with
care.

The “-[0-9]*” should be used instead of “-*” to avoid potentially ambiguous matches such as
“tk-postgresql” matching a “tk-*”DEPENDS.

Wildcards can also be used to specify that a package will onlybuild against a certain minimum
version of a pre-requisite:

DEPENDS+= ImageMagick>=6.0:../../graphics/ImageMagic k

This means that the package will build using version 6.0 of ImageMagick or newer. Such a
dependency may be warranted if, for example, the command line options of an executable have
changed.

If you need to depend on minimum versions of libraries, see the buildlink section of the pkgsrc
guide.

For security �xes, please update the package vulnerabilities �le. SeeSection 19.1.9for more
information.

If your package needs �les from another package to build, addthe relevant distribution �les to
DISTFILES , so they will be extracted automatically. See theprint/ghostscript package for an
example. (It relies on the jpeg sources being present in source form during the build.)

19.1.6. Handling con�icts with other packages

Your package may con�ict with other packages a user might already have installed on his system, e.g. if
your package installs the same set of �les as another packagein the pkgsrc tree or has the samePKGNAME.

For example,x11/libXaw3d andx11/Xaw-Xpm install the same shared library, thus you set in
pkgsrc/x11/libXaw3d/Makefile :

CONFLICTS= Xaw-Xpm-[0-9] *

and inpkgsrc/x11/Xaw-Xpm/Makefile :

CONFLICTS= libXaw3d-[0-9] *

92

Chapter 19. Making your package work

pkg_add(1) is able to detect attempts to install packages that con�ict with existing packages and abort.
However, in many situations this is too late in the process. Binary package managers will not know about
the con�ict until they attempt to install the package after already downloading it and all its dependencies.
Users may also waste time building a package and its dependencies only to �nd out at the end that it
con�icts with another package they have installed.

To avoid these issuesCONFLICTSentries should be added in all cases where it is known that packages
con�ict with each other. TheseCONFLICTSentries are exported in pkg_summary(5) �les and consumed
by binary package managers to inform users that packages cannot be installed onto the target system.

19.1.7. Packages that cannot or should not be built

There are several reasons why a package might be instructed to not build under certain circumstances. If
the package builds and runs on most platforms, the exceptions should be noted with
BROKEN_ON_PLATFORM. If the package builds and runs on a small handful of platforms, set
BROKEN_EXCEPT_ON_PLATFORMinstead. BothBROKEN_ON_PLATFORMand
BROKEN_EXCEPT_ON_PLATFORMare OS triples (OS-version-platform) that can use glob-style wildcards.

If a package is not appropriate for some platforms (as opposed to merely broken), a different set of
variables should be used as this affects failure reporting and statistics. If the package is appropriate for
most platforms, the exceptions should be noted withNOT_FOR_PLATFORM. If the package is appropriate
for only a small handful of platforms (often exactly one), set ONLY_FOR_PLATFORMinstead. Both
ONLY_FOR_PLATFORMandNOT_FOR_PLATFORMare OS triples (OS-version-platform) that can use
glob-style wildcards.

Some packages are tightly bound to a speci�c version of an operating system, e.g. LKMs or
sysutils/lsof . Such binary packages are not backwards compatible with other versions of the OS,
and should be uploaded to a version speci�c directory on the FTP server. Mark these packages by setting
OSVERSION_SPECIFICto “yes”. This variable is not currently used by any of the package system
internals, but may be used in the future.

If the package should be skipped (for example, because it provides functionality already provided by the
system), setPKG_SKIP_REASONto a descriptive message. If the package should fail becausesome
preconditions are not met, setPKG_FAIL_REASONto a descriptive message.

19.1.8. Packages which should not be deleted, once installe d

To ensure that a package may not be deleted, once it has been installed, thePKG_PRESERVEde�nition
should be set in the package Make�le. This will be carried into any binary package that is made from this
pkgsrc entry. A “preserved” package will not be deleted using pkg_delete(1) unless the “-f” option is
used.

19.1.9. Handling packages with security problems

When a vulnerability is found, this should be noted in
localsrc/security/advisories/pkg-vulnerabilities , and after committing that �le, ask
pkgsrc-security@NetBSD.org to update the �le on ftp.NetBSD.org.

93

Chapter 19. Making your package work

After �xing the vulnerability by a patch, itsPKGREVISIONshould be increased (this is of course not
necessary if the problem is �xed by using a newer release of the software), and the pattern in the
pkg-vulnerabilities �le must be updated.

Also, if the �x should be applied to the stable pkgsrc branch,be sure to submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handled semi-automatically by a weekly cron job.

19.1.10. How to handle incrementing versions when �xing an e xisting
package

When making �xes to an existing package it can be useful to change the version number inPKGNAME. To
avoid con�icting with future versions by the original author, a “nb1”, “nb2”, ... suf�x can be used on
package versions by settingPKGREVISION=1(2, ...). The “nb” is treated like a “.” by the package tools.
e.g.

DISTNAME= foo-17.42
PKGREVISION= 9

will result in aPKGNAMEof “foo-17.42nb9”. If you want to use the original value ofPKGNAMEwithout
the “nbX” suf�x, e.g. for settingDIST_SUBDIR, usePKGNAME_NOREV.

When a new release of the package is released, thePKGREVISIONshould be removed, e.g. on a new
minor release of the above package, things should be like:

DISTNAME= foo-17.43

PKGREVISIONshould be incremented for any non-trivial change in the resulting binary package. Without
a PKGREVISIONbump, someone with the previous version installed has no wayof knowing that their
package is out of date. Thus, changes without increasingPKGREVISIONare essentially labeled "this is so
trivial that no reasonable person would want to upgrade", and this is the rough test for when increasing
PKGREVISIONis appropriate. Examples of changes that do not merit increasingPKGREVISIONare:

• ChangingHOMEPAGE, MAINTAINER, OWNER, or comments in Make�le.

• Changing build variables if the resulting binary package isthe same.

• ChangingDESCR.

• AddingPKG_OPTIONSif the default options don't change.

Examples of changes that do merit an increase toPKGREVISIONinclude:

• Security �xes

• Changes or additions to a patch �le

• Changes to thePLIST

• A dependency is changed or renamed.

PKGREVISION must also be incremented when dependencies have ABI changes.

94

Chapter 19. Making your package work

19.1.11. Substituting variable text in the package �les (th e SUBST
framework)

When you want to replace the same text in multiple �les or whenthe replacement text varies, patches
alone cannot help. This is where the SUBST framework comes in. It provides an easy-to-use interface for
replacing text in �les. Example:

SUBST_CLASSES+= fix-paths
SUBST_STAGE.fix-paths= pre-configure
SUBST_MESSAGE.fix-paths= Fixing absolute paths.
SUBST_FILES.fix-paths= src/ * .c
SUBST_FILES.fix-paths+= scripts/ * .sh
SUBST_SED.fix-paths= -e 's,"/usr/local,"${PREFIX},g'
SUBST_SED.fix-paths+= -e 's,"/var/log,"${VARBASE}/log ,g'

SUBST_CLASSESis a list of identi�ers that are used to identify the different SUBST blocks that are
de�ned. The SUBST framework is heavily used by pkgsrc, so it is important to always use the+=

operator with this variable. Otherwise some substitutionsmay be skipped.

The remaining variables of each SUBST block are parameterized with the identi�er from the �rst line
(fix-paths in this case.) They can be seen as parameters to a function call.

SUBST_STAGE.* speci�es the stage at which the replacement will take place.All combinations ofpre- ,
do- andpost- together with a phase name are possible, though only few are actually used. Most
commonly used arepost-patch andpre-configure . Of these two,pre-configure should be
preferred because then it is possible to runbmake patchand have the state after applying the patches but
before making any other changes. This is especially useful when you are debugging a package in order to
create new patches for it. Similarly,post-build is preferred overpre-install , because the install
phase should generally be kept as simple as possible. When you usepost-build , you have the same
�les in the working directory that will be installed later, so you can check if the substitution has
succeeded.

SUBST_MESSAGE.* is an optional text that is printed just before the substitution is done.

SUBST_FILES. * is the list of shell globbing patterns that speci�es the �lesin which the substitution will
take place. The patterns are interpreted relatively to theWRKSRCdirectory.

SUBST_SED.* is a list of arguments to sed(1) that specify the actual substitution. Every sed command
should be pre�xed with-e , so that all SUBST blocks look uniform.

There are some more variables, but they are so seldomly used that they are only documented in the
mk/subst.mk �le.

19.2. The fetch phase

19.2.1. Packages whose dist�les aren't available for plain downloading

If you need to download from a dynamic URL you can setDYNAMIC_MASTER_SITESand amake fetch
will call files/getsite.sh with the name of each �le to download as an argument, expecting it to
output the URL of the directory from which to download it.graphics/ns-cult3d is an example of
this usage.

95

Chapter 19. Making your package work

If the download can't be automated, because the user must submit personal information to apply for a
password, or must pay for the source, or whatever, you can setFETCH_MESSAGEto a list of lines that are
displayed to the user before aborting the build. Example:

FETCH_MESSAGE= "Please download the files"
FETCH_MESSAGE+= " "${DISTFILES:Q}
FETCH_MESSAGE+= "manually from "${MASTER_SITES:Q}"."

19.2.2. How to handle modi�ed dist�les with the 'old' name

Sometimes authors of a software package make some modi�cations after the software was released, and
they put up a new dist�le without changing the package's version number. If a package is already in
pkgsrc at that time, the checksum will no longer match. The contents of the new dist�le should be
compared against the old one before changing anything, to make sure the dist�le was really updated on
purpose, and that no trojan horse or so crept in. Please mention that the dist�les were compared and what
was found in your commit message.

Then, the correct way to work around this is to setDIST_SUBDIR to a unique directory name, usually
based onPKGNAME_NOREV(but take care with python or ruby packages, wherePKGNAMEincludes a
variable pre�x). All DISTFILES andPATCHFILESfor this package will be put in that subdirectory of the
local dist�les directory. (SeeSection 19.1.10for more details.) In case this happens more often,
PKGNAMEcan be used (thus including thenbX suf�x) or a date stamp can be appended, like
${PKGNAME_NOREV}-YYYYMMDD.

DIST_SUBDIR is also used when a dist�le's name does not contain a version and the dist�le is apt to
change. In cases where the likelihood of this is very small,DIST_SUBDIR might not be required.
Additionally, DIST_SUBDIR must not be removed unless the dist�le name changes, even if apackage is
being moved or renamed.

Do not forget regenerating thedistinfo �le after that, since it contains theDIST_SUBDIR path in the
�lenames. Also, increase the PKGREVISION if the installed package is different. Furthermore, a mail to
the package's authors seems appropriate telling them that changing dist�les after releases without
changing the �le names is not good practice.

19.2.3. Packages hosted on github.com

Helper methods exist for packages hosted on github.com which will often have dist�le names that clash
with other packages, for example1.0.tar.gz . Use one of the three recipes from below:

19.2.3.1. Fetch based on a tagged release

If your dist�le URL looks similar to
http://github.com/username/exampleproject/archive/v 1.0.zip , then you are packaging a
tagged release.

DISTNAME= exampleproject-1.0
MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}
#GITHUB_PROJECT= # can be omitted if same as DISTNAME
GITHUB_TAG= v${PKGVERSION_NOREV}
EXTRACT_SUFX= .zip

96

Chapter 19. Making your package work

19.2.3.2. Fetch based on a speci�c commit

If your dist�le URL looks similar to
http://github.com/example/example/archive/988881adc 9fc3655077dc2d4d757d480b5ea0e11.tar.gz ,
then you are packaging a speci�c commit not tied to a release.

DISTNAME= example-1.0
MASTER_SITES= ${MASTER_SITE_GITHUB:=example/}
#GITHUB_PROJECT= # can be omitted if same as DISTNAME
GITHUB_TAG= 988881adc9fc3655077dc2d4d757d480b5ea0e11

19.2.3.3. Fetch based on release

If your dist�le URL looks similar to
http://github.com/username/exampleproject/releases/ download/rel-1.6/offensive-1.6.zip ,
then you are packaging a release.

DISTNAME= offensive-1.6
PKGNAME= ${DISTNAME:S/offensive/proper/}
MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}
GITHUB_PROJECT= exampleproject
GITHUB_RELEASE= rel-${PKGVERSION_NOREV} # usually just s et this to ${DISTNAME}
EXTRACT_SUFX= .zip

19.3. The con�gure phase

19.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with different object formats like a.out and ELF, and varying
abilities to do shared library and dynamic loading at all. Toaccompany this, varying commands and
options have to be passed to the compiler, linker, etc. to getthe Right Thing, which can be pretty
annoying especially if you don't have all the machines at your hand to test things. Thedevel/libtool

pkg can help here, as it just “knows” how to build both static and dynamic libraries from a set of source
�les, thus being platform-independent.

Here's how to use libtool in a package in seven simple steps:

1. AddUSE_LIBTOOL=yes to the package Make�le.

2. For library objects, use “${LIBTOOL} --mode=compile ${CC}” in place of “${CC}”. You could
even add it to the de�nition ofCC, if only libraries are being built in a given Make�le. This one
command will build both PIC and non-PIC library objects, so you need not have separate shared and
non-shared library rules.

3. For the linking of the library, remove any “ar”, “ranlib”,and “ld -Bshareable” commands, and
instead use:

${LIBTOOL} --mode=link \

97

Chapter 19. Making your package work

${CC} -o ${.TARGET:.a=.la} \
${OBJS:.o=.lo} \
-rpath ${PREFIX}/lib \
-version-info major:minor

Note that the library is changed to have a.la extension, and the objects are changed to have a.lo

extension. ChangeOBJSas necessary. This automatically creates all of the.a , .so.major.minor ,
and ELF symlinks (if necessary) in the build directory. Be sure to include “-version-info”, especially
when major and minor are zero, as libtool will otherwise strip off the shared library version.

From the libtool manual:

So, libtool library versions are described by three integer s:

CURRENT
The most recent interface number that this library implemen ts.

REVISION
The implementation number of the CURRENT interface.

AGE
The difference between the newest and oldest interfaces tha t
this library implements. In other words, the library implem ents
all the interface numbers in the range from number `CURRENT -
AGE' to `CURRENT'.

If two libraries have identical CURRENT and AGE numbers, the n the
dynamic linker chooses the library with the greater REVISIO N number.

The “-release” option will produce different results for a.out and ELF (excluding symlinks) in only
one case. An ELF library of the form “libfoo-release.so.x.y” will have a symlink of “libfoo.so.x.y”
on an a.out platform. This is handled automatically.

The “-rpath argument” is the install directory of the library being built.

In thePLIST , include only the.la �le, the other �les will be added automatically.

4. When linking shared object (.so) �les, i.e. �les that are loaded via dlopen(3), NOT shared libraries,
use “-module -avoid-version” to prevent them getting version tacked on.

ThePLIST �le gets thefoo.so entry.

5. When linking programs that depend on these librariesbeforethey are installed, preface the cc(1) or
ld(1) line with “${LIBTOOL} --mode=link”, and it will �nd th e correct libraries (static or shared),
but please be aware that libtool will not allow you to specifya relative path in -L (such as
“-L../somelib”), because it expects you to change that argument to be the.la �le. e.g.

${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -ls omelib

should be changed to:

${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la

and it will do the right thing with the libraries.

6. When installing libraries, preface the install(1) or cp(1) command with “${LIBTOOL}
--mode=install”, and change the library name to.la . e.g.

${LIBTOOL} --mode=install ${BSD_INSTALL_LIB} ${SOMELIB :.a=.la} ${PREFIX}/lib

98

Chapter 19. Making your package work

This will install the static.a , shared library, any needed symlinks, and run ldcon�g(8).

7. In yourPLIST , include only the.la �le (this is a change from previous behaviour).

19.3.2. Using libtool on GNU packages that already support l ibtool

Add USE_LIBTOOL=yes to the package Make�le. This will override the package's ownlibtool in most
cases. For older libtool using packages, libtool is made by ltcon�g script during the do-con�gure step;
you can check the libtool script location by doingmake con�gure; �nd work*/ -name libtool .

LIBTOOL_OVERRIDEspeci�es which libtool scripts, relative toWRKSRC, to override. By default, it is set
to “libtool */libtool */*/libtool”. If this does not match the location of the package's libtool script(s), set
it as appropriate.

If you do not need* .a static libraries built and installed, then useSHLIBTOOL_OVERRIDEinstead.

If your package makes use of the platform-independent library for loading dynamic shared objects, that
comes with libtool (libltdl), you should include devel/libltdl/buildlink3.mk.

Some packages use libtool incorrectly so that the package may not work or build in some circumstances.
Some of the more common errors are:

• The inclusion of a shared object (-module) as a dependent library in an executable or library. This in
itself isn't a problem if one of two things has been done:

1. The shared object is named correctly, i.e.libfoo.la , not foo.la

2. The -dlopen option is used when linking an executable.

• The use of libltdl without the correct calls to initialisation routines. The function lt_dlinit() should be
called and the macroLTDL_SET_PRELOADED_SYMBOLSincluded in executables.

19.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed to regenerate the con�gure script and
Make�le.in make�le templates, then they should be executedin a pre-con�gure target.

For packages that need only autoconf:

AUTOCONF_REQD= 2.50 # if default version is not good enough
USE_TOOLS+= autoconf # use "autoconf213" for autoconf-2.1 3
...

pre-configure:
cd ${WRKSRC} && autoconf

...

and for packages that need automake and autoconf:

AUTOMAKE_REQD= 1.7.1 # if default version is not good enough
USE_TOOLS+= automake # use "automake14" for automake-1.4

99

Chapter 19. Making your package work

...

pre-configure:
set -e; cd ${WRKSRC}; \
aclocal; autoheader; automake -a --foreign -i; autoconf

...

Packages which use GNU Automake will almost certainly require GNU Make.

There are times when the con�gure process makes additional changes to the generated �les, which then
causes the build process to try to re-execute the automake sequence. This is prevented by touching
various �les in the con�gure stage. If this causes problems with your package you can set
AUTOMAKE_OVERRIDE=NOin the package Make�le.

19.4. Programming languages

19.4.1. C, C++, and Fortran

Compilers for the C, C++, and Fortran languages comes with the NetBSD base system. By default,
pkgsrc assumes that a package is written in C and will hide allother compilers (via the wrapper
framework, seeChapter 14).

To declare which language's compiler a package needs, set the USE_LANGUAGESvariable. Allowed
values currently are “c”, “c++”, and “fortran” (and any combination). The default is “c”. Packages using
GNU con�gure scripts, even if written in C++, usually need a Ccompiler for the con�gure phase.

19.4.2. Java

If a program is written in Java, use the Java framework in pkgsrc. The package must include
../../mk/java-vm.mk . This Make�le fragment provides the following variables:

• USE_JAVAde�nes if a build dependency on the JDK is added. IfUSE_JAVAis set to “run”, then there
is only a runtime dependency on the JDK. The default is “yes”,which also adds a build dependency on
the JDK.

• SetUSE_JAVA2to declare that a package needs a Java2 implementation. The supported values are
“yes”, “1.4”, and “1.5”. “yes” accepts any Java2 implementation, “1.4” insists on versions 1.4 or
above, and “1.5” only accepts versions 1.5 or above. This variable is not set by default.

• PKG_JAVA_HOMEis automatically set to the runtime location of the used Javaimplementation
dependency. It may be used to setJAVA_HOMEto a good value if the program needs this variable to be
de�ned.

100

Chapter 19. Making your package work

19.4.3. Packages containing perl scripts

If your package contains interpreted perl scripts, add “perl” to the USE_TOOLSvariable and set
REPLACE_PERLto ensure that the proper interpreter path is set.REPLACE_PERLshould contain a list of
scripts, relative toWRKSRC, that you want adjusted. Every occurrence of* /bin/perl in a she-bang line
will be replaced with the full path to the perl executable.

If a particular version of perl is needed, set thePERL5_REQDvariable to the version number. The default
is “5.0”.

SeeSection 19.6.6for information about handling perl modules.

19.4.4. Packages containing shell scripts

REPLACE_SH, REPLACE_BASH, REPLACE_CSH, andREPLACE_KSHcan be used to replace shell hash
bangs in �les. Please use the appropriate one, preferingREPLACE_SHin case this shell is suf�cient. Each
should contain a list of scripts, relative toWRKSRC, that you want adjusted. Every occurrence of the
matching shell in a she-bang line will be replaced with the full path to the shell executable. When using
REPLACE_BASH, don't forget to addbash to USE_TOOLS.

19.4.5. Other programming languages

Currently, there is no special handling for other languagesin pkgsrc. If a compiler package provides a
buildlink3.mk �le, include that, otherwise just add a (build) dependency on the appropriate compiler
package.

19.5. The build phase
The most common failures when building a package are that some platforms do not provide certain
header �les, functions or libraries, or they provide the functions in a library that the original package
author didn't know. To work around this, you can rewrite the source code in most cases so that it does not
use the missing functions or provides a replacement function.

19.5.1. Compiling C and C++ code conditionally

If a package already comes with a GNU con�gure script, the preferred way to �x the build failure is to
change the con�gure script, not the code. In the other cases,you can utilize the C preprocessor, which
de�nes certain macros depending on the operating system andhardware architecture it compiles for.
These macros can be queried using for example#if defined(__i386) . Almost every operating
system, hardware architecture and compiler has its own macro. For example, if the macros__GNUC__,
__i386__ and__NetBSD__ are all de�ned, you know that you are using NetBSD on an i386
compatible CPU, and your compiler is GCC.

The list of the following macros for hardware and operating system depends on the compiler that is used.
For example, if you want to conditionally compile code on Solaris, don't use__sun__ , as the SunPro
compiler does not de�ne it. Use__sun instead.

101

Chapter 19. Making your package work

19.5.1.1. C preprocessor macros to identify the operating s ystem

To distinguish between 4.4 BSD-derived systems and the restof the world, you should use the following
code.

#include <sys/param.h>
#if (defined(BSD) && BSD >= 199306)
/ * BSD-specific code goes here * /
#else
/ * non-BSD-specific code goes here * /
#endif

If this distinction is not �ne enough, you can also test for the following macros.

Cygwin __CYGWIN__
DragonFly __DragonFly__
FreeBSD __FreeBSD__
Haiku __HAIKU__
Interix __INTERIX
IRIX __sgi (TODO: get a definite source for this)
Linux linux, __linux, __linux__
Mac OS X __APPLE__
MirBSD __MirBSD__ (__OpenBSD__ is also defined)
Minix3 __minix
NetBSD __NetBSD__
OpenBSD __OpenBSD__
Solaris sun, __sun

19.5.1.2. C preprocessor macros to identify the hardware ar chitecture

i386 i386, __i386, __i386__
MIPS __mips
SPARC sparc, __sparc

19.5.1.3. C preprocessor macros to identify the compiler

GCC __GNUC__ (major version), __GNUC_MINOR__
MIPSpro _COMPILER_VERSION (0x741 for MIPSpro 7.41)
SunPro __SUNPRO_C (0x570 for Sun C 5.7)
SunPro C++ __SUNPRO_CC (0x580 for Sun C++ 5.8)

19.5.2. How to handle compiler bugs

Some source �les trigger bugs in the compiler, based on combinations of compiler version and
architecture and almost always relation to optimisation being enabled. Common symptoms are gcc
internal errors or never �nishing compiling a �le.

102

Chapter 19. Making your package work

Typically, a workaround involves testing theMACHINE_ARCHand compiler version, disabling
optimisation for that combination of �le,MACHINE_ARCHand compiler.

This used to be a big problem in the past, but is rarely needed now as compiler technology has matured.
If you still need to add a compiler speci�c workaround, please do so in the �lehacks.mk and describe
the symptom and compiler version as detailed as possible.

19.5.3. Unde�ned reference to “...”

This error message often means that a package did not link to ashared library it needs. The following
functions are known to cause this error message over and over.

Function Library Affected platforms

accept, bind, connect -lsocket Solaris

crypt -lcrypt DragonFly, NetBSD

dlopen, dlsym -ldl Linux

gethost* -lnsl Solaris

inet_aton -lresolv Solaris

nanosleep, sem_*, timer_* -lrt Solaris

openpty -lutil Linux

To �x these linker errors, it is often suf�cient to sayLIBS. OperatingSystem += -l foo to the package
Makefile and then saybmake clean; bmake.

19.5.3.1. Special issue: The SunPro compiler

When you are using the SunPro compiler, there is another possibility. That compiler cannot handle the
following code:

extern int extern_func(int);

static inline int
inline_func(int x)
{

return extern_func(x);
}

int main(void)
{

return 0;
}

It generates the code forinline_func even if that function is never used. This code then refers to
extern_func , which can usually not be resolved. To solve this problem youcan try to tell the package
to disable inlining of functions.

103

Chapter 19. Making your package work

19.5.4. Running out of memory

Sometimes packages fail to build because the compiler runs into an operating system speci�c soft limit.
With theUNLIMIT_RESOURCESvariable pkgsrc can be told to unlimit the resources. Currently, the
allowed values are any combination of “cputime”, “datasize”, “memorysize”, and “stacksize”. Setting
this variable is similar to running the shell builtinulimit command to raise the maximum data segment
size or maximum stack size of a process, respectively, to their hard limits.

19.6. The install phase

19.6.1. Creating needed directories

The BSD-compatibleinstall supplied with some operating systems cannot create more than one
directory at a time. As such, you should call${INSTALL_ * _DIR} like this:

${INSTALL_DATA_DIR} ${PREFIX}/dir1
${INSTALL_DATA_DIR} ${PREFIX}/dir2

You can also just append “dir1 dir2 ” to the INSTALLATION_DIRS variable, which will automatically
do the right thing.

19.6.2. Where to install documentation

In general, documentation should be installed into${PREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME} (the latter includes the version number of the package).

Many modern packages using GNU autoconf allow to set the directory where HTML documentation is
installed with the “--with-html-dir” option. Sometimes using this �ag is needed because otherwise the
documentation ends up in${PREFIX}/share/doc/html or other places.

An exception to the above is that library API documentation generated with thetextproc/gtk-doc

tools, for use by special browsers (devhelp) should be left at their default location, which is
${PREFIX}/share/gtk-doc . Such documentation can be recognized from �les ending in.devhelp

or .devhelp2 . (It is also acceptable to install such �les in${PREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME} ; the.devhelp * �le must be directly in that directory then, no
additional subdirectory level is allowed in this case. Thisis usually achieved by using
“--with-html-dir=${PREFIX}/share/doc”.${PREFIX}/share/gtk-doc is preferred though.)

19.6.3. Installing highscore �les

Certain packages, most of them in the games category, install a score �le that allows all users on the
system to record their highscores. In order for this to work,the binaries need to be installed setgid and
the score �les owned by the appropriate group and/or owner (traditionally the "games" user/group). Set
USE_GAMESGROUPto yes to support this. The following variables, documentedin more detail in
mk/defaults/mk.conf , control this behaviour:GAMEDATAMODE, GAMEDIRMODE, GAMES_GROUP,
GAMEMODE, GAME_USER. Other useful variables are:GAMEDIR_PERMS, GAMEDATA_PERMSand
SETGID_GAMES_PERMS.

104

Chapter 19. Making your package work

An example that illustrates some of the variables describedabove isgames/moon-buggy .
OWN_DIRS_PERMSis used to properly set directory permissions of the directory where the score�le is
saved,REQD_FILES_PERMSis used to create a dummy score�le (mbscore) with the proper permissions
andSPECIAL_PERMSis used to install setgid the game binary:

USE_GAMESGROUP= yes

BUILD_DEFS+= VARBASE

OWN_DIRS_PERMS+= ${VARBASE}/games/moon-buggy ${GAMEDIR_PERMS}
REQD_FILES_PERMS+= /dev/null ${VARBASE}/games/moon-bu ggy/mbscore ${GAMEDATA_PERMS}
SPECIAL_PERMS+= ${PREFIX}/bin/moon-buggy ${SETGID_GAM ES_PERMS}

VariousINSTALL_ * variables are also available:INSTALL_GAMEto install setgid game binaries,
INSTALL_GAME_DIRto install game directories that are needed to be accessed bysetgid games and
INSTALL_GAME_DATAto install score�les.

A package should therefore never hard code �le ownership or access permissions but rely on* _PERMSas
described above or alternatively onINSTALL_GAME, INSTALL_GAME_DATAandINSTALL_GAME_DIRto
set these correctly.

19.6.4. Adding DESTDIR support to packages

DESTDIRsupport means that a package installs into a staging directory, not the �nal location of the �les.
Then a binary package is created which can be used for installation as usual. There are two ways: Either
the package must install as root (“destdir”) or the package can install as non-root user (“user-destdir”).

• PKG_DESTDIR_SUPPORThas to be set to “destdir” or “user-destdir”. By default
PKG_DESTDIR_SUPPORTis set to “user-destdir” to help catching more potential packaging problems.
If bsd.prefs.mk is included in the Make�le,PKG_DESTDIR_SUPPORTneeds to be set before the
inclusion.

• All installation operations have to be pre�xed with${DESTDIR} .

• automake gets this DESTDIR mostly right automatically. Many manual rules and pre/post-install often
are incorrect; �x them.

• If �les are installed with special owner/group useSPECIAL_PERMS.

• In general, packages should supportUNPRIVILEGEDto be able to use DESTDIR.

19.6.5. Packages with hardcoded paths to other interpreter s

Your package may also contain scripts with hardcoded paths to other interpreters besides (or as well as)
perl. To correct the full pathname to the script interpreter, you need to set the following de�nitions in
yourMakefile (we shall usetclsh in this example):

REPLACE_INTERPRETER+= tcl
REPLACE.tcl.old= . * /bin/tclsh
REPLACE.tcl.new= ${PREFIX}/bin/tclsh
REPLACE_FILES.tcl= # list of tcl scripts which need to be fix ed,

105

Chapter 19. Making your package work

relative to ${WRKSRC}, just as in REPLACE_PERL

Note: Before March 2006, these variables were called _REPLACE.* and _REPLACE_FILES. * .

19.6.6. Packages installing perl modules

Make�les of packages providing perl5 modules should include the Make�le fragment
../../lang/perl5/module.mk . It provides ado-con�gure target for the standard perl con�guration
for such modules as well as various hooks to tune this con�guration. See comments in this �le for details.

Perl5 modules will install into different places dependingon the version of perl used during the build
process. To address this, pkgsrc will append lines to thePLIST corresponding to the �les listed in the
installed.packlist �le generated by most perl5 modules. This is invoked by de�ning
PERL5_PACKLIST to a space-separated list of packlist �les relative toPERL5_PACKLIST_DIR
(PERL5_INSTALLVENDORARCHby default), e.g.:

PERL5_PACKLIST= auto/Pg/.packlist

The perl5 con�g variablesinstallarchlib , installscript , installvendorbin ,
installvendorscript , installvendorarch , installvendorlib , installvendorman1dir ,
andinstallvendorman3dir represent those locations in which components of perl5 modules may be
installed, provided as variable with uppercase and pre�xedwith PERL5_, e.g.PERL5_INSTALLARCHLIB

and may be used by perl5 packages that don't have a packlist. These variables are also substituted for in
thePLIST as uppercase pre�xed withPERL5_SUB_.

19.6.7. Packages installing info �les

Some packages install info �les or use the “makeinfo” or “install-info” commands.INFO_FILES should
be de�ned in the package Make�le so thatINSTALL andDEINSTALL scripts will be generated to handle
registration of the info �les in the Info directory �le. The “install-info” command used for the info �les
registration is either provided by the system, or by a special purpose package automatically added as
dependency if needed.

PKGINFODIRis the directory under${PREFIX} where info �les are primarily located.PKGINFODIR

defaults to “info” and can be overridden by the user.

The info �les for the package should be listed in the packagePLIST ; however any split info �les need
not be listed.

A package which needs the “makeinfo” command at build time must add “makeinfo” toUSE_TOOLSin
its Make�le. If a minimum version of the “makeinfo” command is needed it should be noted with the
TEXINFO_REQDvariable in the packageMakefile . By default, a minimum version of 3.12 is required.
If the system does not provide amakeinfo command or if it does not match the required minimum, a
build dependency on thedevel/gtexinfo package will be added automatically.

The build and installation process of the software providedby the package should not use theinstall-info
command as the registration of info �les is the task of the packageINSTALL script, and it must use the
appropriatemakeinfo command.

106

Chapter 19. Making your package work

To achieve this goal, the pkgsrc infrastructure creates overriding scripts for theinstall-info andmakeinfo
commands in a directory listed early inPATH.

The script overridinginstall-info has no effect except the logging of a message. The script overriding
makeinfo logs a message and according to the value ofTEXINFO_REQDeither runs the appropriate
makeinfo command or exit on error.

19.6.8. Packages installing man pages

All packages that install manual pages should install them into the same directory, so that there is one
common place to look for them. In pkgsrc, this place is${PREFIX}/${PKGMANDIR} , and this
expression should be used in packages. The default forPKGMANDIRis “man”. Another often-used value
is “share/man ”.

Note: The support for a custom PKGMANDIRis far from complete.

ThePLIST �les can just useman/ as the top level directory for the man page �le entries, and the pkgsrc
framework will convert as needed. In all other places, the correctPKGMANDIRmust be used.

Packages that are con�gured withGNU_CONFIGUREset as “yes”, by default will use the./configure

--mandir switch to set where the man pages should be installed. The path isGNU_CONFIGURE_MANDIR

which defaults to${PREFIX}/${PKGMANDIR} .

Packages that useGNU_CONFIGUREbut do not use --mandir, can setCONFIGURE_HAS_MANDIRto “no”.
Or if the ./configure script uses a non-standard use of --mandir, you can set
GNU_CONFIGURE_MANDIRas needed.

SeeSection 13.5for information on installation of compressed manual pages.

19.6.9. Packages installing GConf data �les

If a package installs.schemas or .entries �les, used by GConf, you need to take some extra steps to
make sure they get registered in the database:

1. Include../../devel/GConf/schemas.mk instead of itsbuildlink3.mk �le. This takes care of
rebuilding the GConf database at installation and deinstallation time, and tells the package where to
install GConf data �les using some standard con�gure arguments. It also disallows any access to the
database directly from the package.

2. Ensure that the package installs its.schemas �les under${PREFIX}/share/gconf/schemas . If
they get installed under${PREFIX}/etc , you will need to manually patch the package.

3. Check the PLIST and remove any entries under the etc/gconfdirectory, as they will be handled
automatically. SeeSection 9.13for more information.

4. De�ne theGCONF_SCHEMASvariable in yourMakefile with a list of all .schemas �les installed
by the package, if any. Names must not contain any directories in them.

5. De�ne theGCONF_ENTRIESvariable in yourMakefile with a list of all .entries �les installed
by the package, if any. Names must not contain any directories in them.

107

Chapter 19. Making your package work

19.6.10. Packages installing scrollkeeper/rarian data �l es

If a package installs.omf �les, used by scrollkeeper/rarian, you need to take some extra steps to make
sure they get registered in the database:

1. Include../../mk/omf-scrollkeeper.mk instead of rarian'sbuildlink3.mk �le. This takes
care of rebuilding the scrollkeeper database at installation and deinstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries under thelibdata/scrollkeeper directory, as they
will be handled automatically.

3. Remove theshare/omf directory from the PLIST. It will be handled by rarian. (make
print-PLIST does this automatically.)

19.6.11. Packages installing X11 fonts

If a package installs font �les, you will need to rebuild the fonts database in the directory where they get
installed at installation and deinstallation time. This can be automatically done by using the pkginstall
framework.

You can list the directories where fonts are installed in theFONTS_DIRS.type variables, wheretype

can be one of “ttf”, “type1” or “x11”. Also make sure that the database �lefonts.dir is not listed in
the PLIST.

Note that you should not create new directories for fonts; instead use the standard ones to avoid that the
user needs to manually con�gure his X server to �nd them.

19.6.12. Packages installing GTK2 modules

If a package installs GTK2 immodules or loaders, you need to take some extra steps to get them
registered in the GTK2 database properly:

1. Include../../x11/gtk2/modules.mk instead of itsbuildlink3.mk �le. This takes care of
rebuilding the database at installation and deinstallation time.

2. SetGTK2_IMMODULES=YESif your package installs GTK2 immodules.

3. SetGTK2_LOADERS=YESif your package installs GTK2 loaders.

4. Patch the package to not touch any of the GTK2 databases directly. These are:

• libdata/gtk-2.0/gdk-pixbuf.loaders

• libdata/gtk-2.0/gtk.immodules

5. Check thePLIST and remove any entries under thelibdata/gtk-2.0 directory, as they will be
handled automatically.

108

Chapter 19. Making your package work

19.6.13. Packages installing SGML or XML data

If a package installs SGML or XML data �les that need to be registered in system-wide catalogs (like
DTDs, sub-catalogs, etc.), you need to take some extra steps:

1. Include../../textproc/xmlcatmgr/catalogs.mk in yourMakefile , which takes care of
registering those �les in system-wide catalogs at installation and deinstallation time.

2. SetSGML_CATALOGSto the full path of any SGML catalogs installed by the package.

3. SetXML_CATALOGSto the full path of any XML catalogs installed by the package.

4. SetSGML_ENTRIESto individual entries to be added to the SGML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (speci�cally, arguments recognized by the
'add' action). Note that you will normally not use this variable.

5. SetXML_ENTRIESto individual entries to be added to the XML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (speci�cally, arguments recognized by the
'add' action). Note that you will normally not use this variable.

19.6.14. Packages installing extensions to the MIME databa se

If a package provides extensions to the MIME database by installing .xml �les inside
${PREFIX}/share/mime/packages , you need to take some extra steps to ensure that the databaseis
kept consistent with respect to these new �les:

1. Include../../databases/shared-mime-info/mimedb.mk (avoid using thebuildlink3.mk

�le from this same directory, which is reserved for inclusion from otherbuildlink3.mk �les). It
takes care of rebuilding the MIME database at installation and deinstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries under theshare/mime directory,exceptfor �les saved
undershare/mime/packages . The former are handled automatically by the
update-mime-database program, but the latter are package-dependent and must be removed by the
package that installed them in the �rst place.

3. Remove anyshare/mime/ * directories from the PLIST. They will be handled by the
shared-mime-info package.

19.6.15. Packages using intltool

If a package uses intltool during its build, addintltool to theUSE_TOOLS, which forces it to use the
intltool package provided by pkgsrc, instead of the one bundled with the distribution �le.

This tracks intltool's build-time dependencies and uses the latest available version; this way, the package
bene�ts of any bug �xes that may have appeared since it was released.

19.6.16. Packages installing startup scripts

If a package contains a rc.d script, it won't be copied into the startup directory by default, but you can
enable it, by adding the optionPKG_RCD_SCRIPTS=YESin mk.conf . This option will copy the scripts

109

Chapter 19. Making your package work

into /etc/rc.d when a package is installed, and it will automatically remove the scripts when the
package is deinstalled.

19.6.17. Packages installing TeX modules

If a package installs TeX packages into the texmf tree, thels-R database of the tree needs to be updated.

Note: Except the main TeX packages such as kpathsea, packages should install �les into
${PREFIX}/share/texmf-dist , not ${PREFIX}/share/texmf .

1. Include../../print/kpathsea/texmf.mk . This takes care of rebuilding thels-R database at
installation and deinstallation time.

2. If your package installs �les into a texmf tree other than the one at
${PREFIX}/share/texmf-dist , setTEX_TEXMF_DIRSto the list of all texmf trees that need
database update.

If your package also installs font map �les that need to be registered usingupdmap, include
../../print/tex-tetex/map.mk and setTEX_MAP_FILESand/orTEX_MIXEDMAP_FILESto
the list of all such font map �les. Thenupdmap will be run automatically at
installation/deinstallation to enable/disable font map �les for TeX output drivers.

3. Make sure that none ofls-R databases are included inPLIST , as they will be removed only by the
kpathsea package.

19.6.18. Packages supporting running binaries in emulatio n

There are some packages that provide libraries and executables for running binaries from a one operating
system on a different one (if the latter supports it). One example is running Linux binaries on NetBSD.

Thepkgtools/rpm2pkg helps in extracting and packaging Linux rpm packages.

TheCHECK_SHLIBScan be set to no to avoid thecheck-shlibstarget, which tests if all libraries for each
installed executable can be found by the dynamic linker. Since the standard dynamic linker is run, this
fails for emulation packages, because the libraries used bythe emulation are not in the standard
directories.

19.6.19. Packages installing hicolor theme icons

If a package installs images under theshare/icons/hicolor and/or updates the
share/icons/hicolor/icon-theme.cache database, you need to take some extra steps to make
sure that the shared theme directory is handled appropriately and that the cache database is rebuilt:

1. Include../../graphics/hicolor-icon-theme/buildlink3.mk .

2. Check thePLIST and remove the entry that refers to the theme cache.

110

Chapter 19. Making your package work

3. Ensure that the PLIST does not remove the shared icon directories from the
share/icons/hicolor hierarchy because they will be handled automatically.

The best way to verify that the PLIST is correct with respect to the last two points is to regenerate it
usingmake print-PLIST .

19.6.20. Packages installing desktop �les

If a package installs.desktop �les undershare/applications and these include MIME information
(MimeType key), you need to take extra steps to ensure that they are registered into the MIME database:

1. Include../../sysutils/desktop-file-utils/desktopdb.mk .

2. Check the PLIST and remove the entry that refers to the
share/applications/mimeinfo.cache �le. It will be handled automatically.

The best way to verify that the PLIST is correct with respect to the last point is to regenerate it using
make print-PLIST .

19.7. Marking packages as having problems
In some cases one does not have the time to solve a problem immediately. In this case, one can plainly
mark a package as broken. For this, one just sets the variableBROKENto the reason why the package is
broken (similar to theRESTRICTEDvariable). A user trying to build the package will immediately be
shown this message, and the build will not be even tried.

BROKENpackages are removed from pkgsrc in irregular intervals.

111

Chapter 20.

Debugging

To check out all the gotchas when building a package, here arethe steps that I do in order to get a
package working. Please note this is basically the same as what was explained in the previous sections,
only with some debugging aids.

• Be sure to setPKG_DEVELOPER=yesin mk.conf .

• Install pkgtools/url2pkg , create a directory for a new package, change into it, then run url2pkg:

% mkdir /usr/pkgsrc/ category / examplepkg

% cd /usr/pkgsrc/ category / examplepkg

% url2pkg http://www.example.com/path/to/distfile.tar. gz

• Edit theMakefile as requested.

• Fill in the DESCR�le

• Runmake con�gure

• Add any dependencies glimpsed from documentation and the con�gure step to the package's
Makefile .

• Make the package compile, doing multiple rounds of

% make

% pkgvi ${WRKSRC}/some/file/that/does/not/compile
% mkpatches
% patchdiff
% mv ${WRKDIR}/.newpatches/ * patches
% make mps
% make clean

Doing this step as non-root user will ensure that no �les are modi�ed that shouldn't be, especially
during the build phase.mkpatches, patchdiff andpkgvi are from thepkgtools/pkgdiff package.

• Look at theMakefile , �x if necessary; seeSection 11.1.

• Generate aPLIST :

make install
make print-PLIST >PLIST
make deinstall

make install
make deinstall

You usually need to beroot to do this. Look if there are any �les left:

make print-PLIST

If this reveals any �les that are missing inPLIST , add them.

• Now that thePLIST is OK, install the package again and make a binary package:

112

Chapter 20. Debugging

make reinstall

make package

• Delete the installed package:

pkg_delete examplepkg

• Repeat the abovemake print-PLIST command, which shouldn't �nd anything now:

make print-PLIST

• Reinstall the binary package:

pkg_add .../ examplepkg .tgz

• Play with it. Make sure everything works.

• Runpkglint from pkgtools/pkglint , and �x the problems it reports:

pkglint

• Submit (or commit, if you have cvs access); seeChapter 21.

113

Chapter 21.

Submitting and Committing

21.1. Submitting binary packages
Our policy is that we accept binaries only from pkgsrc developers to guarantee that the packages don't
contain any trojan horses etc. This is not to annoy anyone butrather to protect our users! You're still free
to put up your home-made binary packages and tell the world where to get them. NetBSD developers
doing bulk builds and wanting to upload them please seeChapter 7.

21.2. Submitting source packages (for non-NetBSD-develop ers)
First, check that your package is complete, compiles and runs well; seeChapter 20and the rest of this
document. Next, generate an uuencoded gzipped tar(1) archive that contains all �les that make up the
package. Finally, send this package to the pkgsrc bug tracking system, either with the send-pr(1)
command, or if you don't have that, go to the web page http://www.NetBSD.org/support/send-pr.html,
which contains some instructions and a link to a form where you can submit packages. The
sysutils/gtk-send-pr package is also available as a substitute for either of the above two tools.

In the form of the problem report, the category should be “pkg”, the synopsis should include the package
name and version number, and the description �eld should contain a short description of your package
(contents of the COMMENT variable or DESCR �le are OK). The uuencoded package data should go
into the “�x” �eld.

If you want to submit several packages, please send a separate PR for each one, it's easier for us to track
things that way.

Alternatively, you can also import new packages into pkgsrc-wip (“pkgsrc work-in-progress”); see the
homepage at http://pkgsrc.org/wip/ for details.

21.3. General notes when adding, updating, or removing pack ages
Please note all package additions, updates, moves, and removals inpkgsrc/doc/CHANGES- YYYY. It's
very important to keep this �le up to date and conforming to the existing format, because it will be used
by scripts to automatically update pages on www.NetBSD.org(http://www.NetBSD.org/) and other sites.
Additionally, check thepkgsrc/doc/TODO �le and remove the entry for the package you updated or
removed, in case it was mentioned there.

When thePKGREVISIONof a package is bumped, the change should appear in
pkgsrc/doc/CHANGES- YYYY if it is security related or otherwise relevant. Mass bumps that result from
a dependency being updated should not be mentioned. In all other cases it's the developer's decision.

114

Chapter 21. Submitting and Committing

There is a make target that helps in creating properCHANGES-YYYYentries:make changes-entry. It uses
the optionalCTYPEandNETBSD_LOGIN_NAMEvariables. The general usage is to �rst make sure that
yourCHANGES-YYYY �le is up-to-date (to avoid having to resolve con�icts later-on) and then tocd to the
package directory. For package updates,make changes-entryis enough. For new packages, or package
moves or removals, set theCTYPEvariable on the command line to "Added", "Moved", or "Removed".
You can setNETBSD_LOGIN_NAMEin mk.conf if your local login name is not the same as your NetBSD
login name. The target also automatically removes possiblyexisting entries for the package in theTODO

�le. Don't forget to commit the changes, e.g. by usingmake commit-changes-entry! If you are not
using a checkout directly from cvs.NetBSD.org, but e.g. a local copy of the repository, you can set
USE_NETBSD_REPO=yes. This makes the cvs commands use the main repository.

21.4. Commit Messages
For several years, there have been mirrors of pkgsrc in fossil, git, and hg. Standard practise when using
these tools is to make the �rst line of a commit message function as a summary that can be read without
the rest, such as is commonly done with "git log --oneline". For this reason, we have the following
guidelines for pkgsrc commit messages:

• Start the commit message with a line that explains the big picture in 65 characters or less. When a
commit is for one package, include the name of the package. For updates, include the version to which
it is updated.

• Leave the next line empty.

• Then come the details for the commit (changes in that package, reason for a change) and any relevant
PRs. Wrap this section.

Here is an example:

libxslt: update to 1.0.30

Changes since 1.0.29:
...

Here is another example:

mk/bsd.pkg.mk: enable SSP by default on NetBSD

(rationale)

Commit messages are �nal: no “cvs admin” is allowed on the pkgsrc repository to change commit
messages.

115

Chapter 21. Submitting and Committing

21.5. Committing: Adding a package to CVS
This section is only of interest for pkgsrc developers with write access to the pkgsrc repository.

When the package is �nished, “cvs add” the �les. Start by adding the directory and then �les in the
directory. Don't forget to add the new package to the category's Makefile . Make sure you don't forget
any �les; you can check by running “cvs status”. An example:

$ cd .../pkgsrc/category
$ cvs add pkgname
$ cd pkgname
$ cvs add DESCR Makefile PLIST distinfo buildlink3.mk patche s
$ cvs add patches/p *
$ cvs status | less
$ cvs commit
$ cd ..
$ vi Makefile # add SUBDIRS+=pkgname line
$ cvs commit Makefile
$ cd pkgname
$ make CTYPE=Added commit-changes-entry

The commit message of the initial import should include partof theDESCR�le, so people reading the
mailing lists know what the package is/does.

Also mention the new package inpkgsrc/doc/CHANGES-20xx .

Previously, “cvs import” was suggested, but it was much easier to get wrong than “cvs add”.

21.6. Updating a package to a newer version
Please always put a concise, appropriate and relevant summary of the changes between old and new
versions into the commit log when updating a package. There are various reasons for this:

• A URL is volatile, and can change over time. It may go away completely or its information may be
overwritten by newer information.

• Having the change information between old and new versions in our CVS repository is very useful for
people who use either cvs or anoncvs.

• Having the change information between old and new versions in our CVS repository is very useful for
people who read the pkgsrc-changes mailing list, so that they can make tactical decisions about when
to upgrade the package.

Please also recognize that, just because a new version of a package has been released, it should not
automatically be upgraded in the CVS repository. We prefer to be conservative in the packages that are
included in pkgsrc - development or beta packages are not really the best thing for most places in which
pkgsrc is used. Please use your judgement about what should go into pkgsrc, and bear in mind that
stability is to be preferred above new and possibly untestedfeatures.

116

Chapter 21. Submitting and Committing

21.7. Renaming a package in pkgsrc
Renaming packages is not recommended.

When renaming packages, be sure to �x any references to old name in other Make�les, options, buildlink
�les, etc.

Also When renaming a package, please de�neSUPERSEDESto the package name and dewey version
pattern(s) of the previous package name. This may be repeated for multiple renames. The new package
would be an exact replacement.

Note that “successor” in the CHANGES-YYYY �le doesn't necessarily mean that itsupersedes, as that
successor may not be an exact replacement but is a suggestionfor the replaced functionality.

21.8. Moving a package in pkgsrc
It is preferred that packages are not renamed or moved, but ifneeded please follow these steps.

1. Make a copy of the directory somewhere else.

2. Remove all CVS dirs.

Alternatively to the �rst two steps you can also do:

% cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsr c/category/package

and use that for further work.

3. Fix CATEGORIESand anyDEPENDSpaths that just did “../package” instead of
“../../category/package”.

4. In the modi�ed package's Make�le, consider settingPREV_PKGPATHto the previous
category/package pathname. ThePREV_PKGPATHcan be used by tools for doing an update using
pkgsrc building; for example, it can search the pkg_summary(5) database forPREV_PKGPATH(if no
SUPERSEDES) and then use the corresponding newPKGPATHfor that moved package. Note that it
may have multiple matches, so the tool should also check on thePKGBASEtoo. ThePREV_PKGPATH

probably has no value unlessSUPERSEDESis not set, i.e.PKGBASEstays the same.

5. cvs import the modi�ed package in the new place.

6. Check if any package depends on it:

% cd /usr/pkgsrc
% grep /package * / * /Makefile * * / * /buildlink *

7. Fix paths in packages from step 5 to point to new location.

8. cvs rm (-f) the package at the old location.

9. Remove fromoldcategory/Makefile .

10. Add tonewcategory/Makefile .

11. Commit the changed and removed �les:

% cvs commit oldcategory/package oldcategory/Makefile new category/Makefile

(and any packages from step 5, of course).

117

Chapter 22.

Frequently Asked Questions

This section contains the answers to questions that may arise when you are writing a package. If you
don't �nd your question answered here, �rst have a look in theother chapters, and if you still don't have
the answer, ask on thepkgsrc-users mailing list.

1. What is the difference betweenMAKEFLAGS, .MAKEFLAGSandMAKE_FLAGS?

MAKEFLAGSare the �ags passed to the pkgsrc-internal invocations of make(1), whileMAKE_FLAGSare
the �ags that are passed to theMAKE_PROGRAMwhen building the package. [FIXME: What is
.MAKEFLAGS for?]

2. What is the difference betweenMAKE, GMAKEandMAKE_PROGRAM?

MAKEis the path to the make(1) program that is used in the pkgsrc infrastructure.GMAKEis the path to
GNU Make, but you need to sayUSE_TOOLS+=gmaketo use that.MAKE_PROGRAMis the path to the
Make program that is used for building the package.

3. What is the difference betweenCC, PKG_CCandPKGSRC_COMPILER?

CCis the path to the real C compiler, which can be con�gured by the pkgsrc user.PKG_CCis the path to
the compiler wrapper.PKGSRC_COMPILERis not a path to a compiler, but the type of compiler that
should be used. Seemk/compiler.mk for more information about the latter variable.

4. What is the difference betweenBUILDLINK_LDFLAGS, BUILDLINK_LDADDandBUILDLINK_LIBS ?

[FIXME]

5. Why doesmake show-var VARNAME=BUILDLINK_PREFIX. foo say it's empty?

For optimization reasons, some variables are only available in the “wrapper” phase and later. To
“simulate” the wrapper phase, appendPKG_PHASE=wrapper to the above command.

6. What does${MASTER_SITE_SOURCEFORGE:=package/} mean? I don't understand the:= inside it.

The:= is not really an assignment operator, although it looks likeit. Instead, it is a degenerate form of
${LIST: old_string =new_string } , which is documented in the make(1) man page and which is
commonly used in the form${SRCS:.c=.o} . In the case ofMASTER_SITE_* , old_string is the
empty string andnew_string is package/ . That's where the: and the= fall together.

7. Which mailing lists are there for package developers?

tech-pkg (http://www.NetBSD.org/mailinglists/index.html#tech-pkg)

This is a list for technical discussions related to pkgsrc development, e.g. soliciting feedback for
changes to pkgsrc infrastructure, proposed new features, questions related to porting pkgsrc to a

118

Chapter 22. Frequently Asked Questions

new platform, advice for maintaining a package, patches that affect many packages, help requests
moved from pkgsrc-users when an infrastructure bug is found, etc.

pkgsrc-bugs (http://www.NetBSD.org/mailinglists/index.html#pkgsrc-bugs)

All bug reports in category "pkg" sent with send-pr(1) appear here. Please do not report your bugs
here directly; use one of the other mailing lists.

8. Where is the pkgsrc documentation?

There are many places where you can �nd documentation about pkgsrc:

• The pkgsrc guide (this document) is a collection of chaptersthat explain large parts of pkgsrc, but
some chapters tend to be outdated. Which ones they are is hardto say.

• On the mailing list archives (see http://mail-index.NetBSD.org/), you can �nd discussions about
certain features, announcements of new parts of the pkgsrc infrastructure and sometimes even
announcements that a certain feature has been marked as obsolete. The bene�t here is that each
message has a date appended to it.

• Many of the �les in themk/ directory start with a comment that describes the purpose ofthe �le and
how it can be used by the pkgsrc user and package authors. An easy way to �nd this documentation is
to runbmake help.

• The CVS log messages are a rich source of information, but they tend to be highly abbreviated,
especially for actions that occur often. Some contain a detailed description of what has changed, but
they are geared towards the other pkgsrc developers, not towards an average pkgsrc user. They also
only documentchanges, so if you don't know what has been before, these messages maynot be worth
too much to you.

• Some parts of pkgsrc are only “implicitly documented”, thatis the documentation exists only in the
mind of the developer who wrote the code. To get this information, use thecvs annotatecommand to
see who has written it and ask on thetech-pkg mailing list, so that others can �nd your questions
later (see above). To be sure that the developer in charge reads the mail, you may CC him or her.

9. I have a little time to kill. What shall I do?

This is not really an FAQ yet, but here's the answer anyway.

• Runpkg_chk -N (from thepkgtools/pkg_chk package). It will tell you about newer versions of
installed packages that are available, but not yet updated in pkgsrc.

• Browsepkgsrc/doc/TODO — it contains a list of suggested new packages and a list of cleanups and
enhancements for pkgsrc that would be nice to have.

• Review packages for which review was requested on the tech-pkg
(http://www.NetBSD.org/mailinglists/index.html#tech-pkg) mailing list.

119

Chapter 23.

GNOME packaging and porting

Quoting GNOME's web site (http://www.gnome.org/):

The GNOME project provides two things: The GNOME desktop environment, an intuitive and attractive
desktop for users, and the GNOME development platform, an extensive framework for building applications
that integrate into the rest of the desktop.

pkgsrc provides a seamless way to automatically build and install a complete GNOME environment
under many different platforms. We can say with con�dence that pkgsrc is one of the most advanced
build and packaging systems for GNOME due to its included technologies buildlink3, the wrappers and
tools framework and automatic con�guration �le management. Lots of efforts are put into achieving a
completely clean deinstallation of installed software components.

Given that pkgsrc is NetBSD (http://www.NetBSD.org/)'s of�cial packaging system, the above also
means that great efforts are put into making GNOME work underthis operating system. Recently,
DragonFly BSD (http://www.dragon�ybsd.org/) also adopted pkgsrc as its preferred packaging system,
contributing lots of portability �xes to make GNOME build and install under it.

This chapter is aimed at pkgsrc developers and other people interested in helping our GNOME porting
and packaging efforts. It provides instructions on how to manage the existing packages and some
important information regarding their internals.

We need your help!: Should you have some spare cycles to devote to NetBSD, pkgsrc and GNOME
and are willing to learn new exciting stuff, please jump straight to the pending work
(http://www.NetBSD.org/contrib/projects.html#gnome) list! There is still a long way to go to get a
fully-functional GNOME desktop under NetBSD and we need your help to achieve it!

23.1. Meta packages
pkgsrc includes three GNOME-related meta packages:

• meta-pkgs/gnome-base : Provides the core GNOME desktop environment. It only includes the
necessary bits to get it to boot correctly, although it may lack important functionality for daily
operation. The idea behind this package is to let end users build their own con�gurations on top of this
one, �rst installing this meta package to achieve a functional setup and then adding individual
applications.

• meta-pkgs/gnome : Provides a complete installation of the GNOME platform anddesktop as de�ned
by the GNOME project; this is based on the components distributed in the
platform/x.y/x.y.z/sources anddesktop/x.y/x.y.z/sources directories of the of�cial
FTP server. Developer-only tools found in those directories are not installed unless required by some
other component to work properly. Similarly, packages fromthe bindings set

120

Chapter 23. GNOME packaging and porting

(bindings/x.y/x.y.z/sources) are not pulled in unless required as a dependency for an end-user
component. This package "extends"meta-pkgs/gnome-base .

• meta-pkgs/gnome-devel : Installs all the tools required to build a GNOME component when
fetched from the CVS repository. These are required to let the autogen.shscripts work appropriately.

In all these packages, theDEPENDSlines are sorted in a way that eases updates: a package may depend
on other packages listed before it but not on any listed afterit. It is very important to keep this order to
ease updates so...do not change it to alphabetical sorting!

23.2. Packaging a GNOME application
Almost all GNOME applications are written in C and use a common set of tools as their build system.
Things get different with the new bindings to other languages (such as Python), but the following will
give you a general idea on the minimum required tools:

• Almost all GNOME applications use the GNU Autotools as theirbuild system. As a general rule you
will need to tell this to your package:

GNU_CONFIGURE=yes
USE_LIBTOOL=yes
USE_TOOLS+=gmake

• If the package uses pkg-con�g to detect dependencies, add this tool to the list of required utilities:

USE_TOOLS+=pkg-config

Also usepkgtools/verifypc at the end of the build process to ensure that you did not miss to
specify any dependency in your package and that the version requirements are all correct.

• If the package uses intltool, be sure to addintltool to theUSE_TOOLSto handle dependencies and
to force the package to use the latest available version.

• If the package uses gtk-doc (a documentation generation utility), do not add a dependency on it. The
tool is rather big and the dist�le should come with pregenerated documentation anyway; if it does not,
it is a bug that you ought to report. For such packages you should disable gtk-doc (unless it is the
default):

CONFIGURE_ARGS+=--disable-gtk-doc

The default location of installed HTML �les (share/gtk-doc/<package-name>) is correct and
should not be changed unless the package insists on installing them somewhere else. Otherwise
programs asdevhelpwill not be able to open them. You can do that with an entry similar to:

CONFIGURE_ARGS+=--with-html-dir=${PREFIX}/share/gtk -doc/...

GNOME uses multipleshareddirectories and �les under the installation pre�x to maintain databases. In
this context, shared means that those exact same directories and �les are used among several different
packages, leading to con�icts in thePLIST . pkgsrc currently includes functionality to handle the most
common cases, so you have to forget about using@unexec ${RMDIR} lines in your �le lists and
omitting shared �les from them. If you �nd yourself doing those,your package is most likely incorrect.

The following table lists the common situations that resultin using shared directories or �les. For each of
them, the appropriate solution is given. After applying thesolution be sure toregenerate the package's
�le list with make print-PLIST and ensure it is correct.

121

Chapter 23. GNOME packaging and porting

Table 23-1. PLIST handling for GNOME packages

If the package... Then...

Installs OMF �les undershare/omf . SeeSection 19.6.10.

Installs icons under theshare/icons/hicolor

hierarchy or updates
share/icons/hicolor/icon-theme.cache .

SeeSection 19.6.19.

Installs �les undershare/mime/packages . SeeSection 19.6.14.

Installs.desktop �les under
share/applications and these include MIME
information.

SeeSection 19.6.20.

23.3. Updating GNOME to a newer version
When seeing GNOME as a whole, there are two kinds of updates:

Major update

Given that there is still a very long way for GNOME 3 (if it everappears), we consider a major
update one that goes from a2.X version to a2.Y one, whereY is even and greater thanX. These are
hard to achieve because they introduce lots of changes in thecomponents' code and almost all
GNOME dist�les are updated to newer versions. Some of them can even break API and ABI
compatibility with the previous major version series. As a result, the update needs to be done all at
once to minimize breakage.

A major update typically consists of around 80 package updates and the addition of some new ones.

Minor update

We consider a minor update one that goes from a2.A.X version to a2.A.Y one whereY is greater
thanX. These are easy to achieve because they do not update all GNOME components, can be done
in an incremental way and do not break API nor ABI compatibility.

A minor update typically consists of around 50 package updates, although the numbers here may
vary a lot.

In order to update the GNOME components in pkgsrc to a new stable release (either major or minor), the
following steps should be followed:

1. Get a list of all the tarballs that form the new release by using the following commands. These will
leave the full list of the components' dist�les into thelist.txt �le:

% echo ls " * .tar.bz2" | \
ftp -V ftp://ftp.gnome.org/pub/gnome/platform/x.y/x.y .z/sources/ | \
awk '{ print $9 }' >list.txt

% echo ls " * .tar.bz2" | \
ftp -V ftp://ftp.gnome.org/pub/gnome/desktop/x.y/x.y. z/sources/ | \
awk '{ print $9 }' >>list.txt

122

Chapter 23. GNOME packaging and porting

2. Open each meta package'sMakefile and bump their version to the release you are updating them
to. The three meta packages should be always consistent withversioning. Obviously remove any
PKGREVISIONs that might be in them.

3. For each meta package, update all itsDEPENDSlines to match the latest versions as shown by the
above commands. Donot list any newer version (even if found in the FTP) because the meta
packages are supposed to list the exact versions that form a speci�c GNOME release. Exceptions are
permitted here if a newer version solves a serious issue in the overall desktop experience; these
typically come in the form of a revision bump in pkgsrc, not innewer versions from the developers.

Packages not listed in thelist.txt �le should be updated to the latest version available (if found
in pkgsrc). This is the case, for example, of the dependencies on the GNU Autotools in the
meta-pkgs/gnome-devel meta package.

4. Generate a patch from the modi�ed meta packages and extract the list of "new" lines. This will
provide you an outline on what packages need to be updated in pkgsrc and in what order:

% cvs diff -u gnome-devel gnome-base gnome | grep '^+D' >todo. txt

5. For major desktop updates it is recommended to zap all yourinstalled packages and start over from
scratch at this point.

6. Now comes the longest step by far: iterate over the contents of todo.txt and update the packages
listed in it in order. For major desktop updates none of theseshould be committed until the entire set
is completed because there are chances of breaking not-yet-updated packages.

7. Once the packages are up to date and working, commit them tothe tree one by one with appropriate
log messages. At the end, commit the three meta package updates and all the corresponding changes
to thedoc/CHANGES-<YEAR>andpkgsrc/doc/TODO �les.

23.4. Patching guidelines
GNOME is a very big component in pkgsrc which approaches 100 packages. Please, it is very important
that you always, always,alwaysfeed back any portability �xes you do to a GNOME package to the
mainstream developers (seeSection 11.3.5). This is the only way to get their attention on portability
issues and to ensure that future versions can be built out-of-the box on NetBSD. The less custom patches
in pkgsrc, the easier further updates are. Those developersin charge of issuing major GNOME updates
will be grateful if you do that.

The most common places to report bugs are the GNOME's Bugzilla (http://bugzilla.gnome.org/) and the
freedesktop.org's Bugzilla (http://bugzilla.freedesktop.org/). Not all components use these to track bugs,
but most of them do. Do not be short on your reports: always provide detailed explanations of the current
failure, how it can be improved to achieve maximum portability and, if at all possible, provide a patch
against CVS head. The more verbose you are, the higher chances of your patch being accepted.

Also, please avoid using preprocessor magic to �x portability issues. While the FreeBSD GNOME
people are doing a great job in porting GNOME to their operating system, the of�cial GNOME sources
are now plagued by conditionals that check for__FreeBSD__ and similar macros. This hurts portability.
Please see our patching guidelines (Section 11.3.4) for more details.

123

III. The pkgsrc infrastructure
internals

This part of the guide deals with everything from the infrastructure that is behind the interfaces described
in the developer's guide. A casual package maintainer should not need anything from this part.

Chapter 24.

Design of the pkgsrc
infrastructure

The pkgsrc infrastructure consists of many small Make�le fragments. Each such fragment needs a
properly speci�ed interface. This chapter explains how such an interface looks like.

24.1. The meaning of variable de�nitions
Whenever a variable is de�ned in the pkgsrc infrastructure,the location and the way of de�nition provide
much information about the intended use of that variable. Additionally, more documentation may be
found in a header comment or in this pkgsrc guide.

A special �le is mk/defaults/mk.conf , which lists all variables that are intended to be user-de�ned.
They are either de�ned using the?= operator or they are left unde�ned because de�ning them to
anything would effectively mean “yes”. All these variablesmay be overridden by the pkgsrc user in the
MAKECONF�le.

Outside this �le, the following conventions apply: Variables that are de�ned using the?= operator may
be overridden by a package.

Variables that are de�ned using the= operator may be used read-only at run-time.

Variables whose name starts with an underscore must not be accessed outside the pkgsrc infrastructure at
all. They may change without further notice.

Note: These conventions are currently not applied consistently to the complete pkgsrc infrastructure.

24.2. Avoiding problems before they arise
All variables that contain lists of things should default tobeing empty. Two examples that do not follow
this rule areUSE_LANGUAGESandDISTFILES . These variables cannot simply be modi�ed using the+=

operator in packageMakefile s (or other �les included by them), since there is no guarantee whether the
variable is already set or not, and what its value is. In the case ofDISTFILES , the packages “know” the
default value and just de�ne it as in the following example.

DISTFILES= ${DISTNAME}${EXTRACT_SUFX} additional-file s.tar.gz

125

Chapter 24. Design of the pkgsrc infrastructure

Because of the selection of this default value, the same value appears in many package Make�les.
Similarly for USE_LANGUAGES, but in this case the default value (“c”) is so short that it doesn't stand
out. Nevertheless it is mentioned in many �les.

24.3. Variable evaluation

24.3.1. At load time

Variable evaluation takes place either at load time or at runtime, depending on the context in which they
occur. The contexts where variables are evaluated at load time are:

• The right hand side of the:= and!= operators,

• Make directives like.if or .for ,

• Dependency lines.

A special exception are references to the iteration variables of.for loops, which are expanded inline, no
matter in which context they appear.

As the values of variables may change during load time, care must be taken not to evaluate them by
accident. Typical examples for variables that should not beevaluated at load time areDEPENDSand
CONFIGURE_ARGS. To make the effect more clear, here is an example:

CONFIGURE_ARGS= # none
CFLAGS= -O
CONFIGURE_ARGS+= CFLAGS=${CFLAGS:Q}

CONFIGURE_ARGS:= ${CONFIGURE_ARGS}

CFLAGS+= -Wall

This code shows how the use of the:= operator can quickly lead to unexpected results. The �rst
paragraph is fairly common code. The second paragraph evaluates theCONFIGURE_ARGSvariable,
which results inCFLAGS=-O. In the third paragraph, the-Wall is appended to theCFLAGS, but this
addition will not appear inCONFIGURE_ARGS. In actual code, the three paragraphs from above typically
occur in completely unrelated �les.

24.3.2. At runtime

After all the �les have been loaded, the values of the variables cannot be changed anymore. Variables
that are used in the shell commands are expanded at this point.

126

Chapter 24. Design of the pkgsrc infrastructure

24.4. How can variables be speci�ed?
There are many ways in which the de�nition and use of a variable can be restricted in order to detect
bugs and violations of the (mostly unwritten) policies. A package can be checked withpkglint -Wall

to see whether it meets these rules.

24.5. Designing interfaces for Make�le fragments
Most of the.mk �les fall into one of the following classes. Cases where a �lefalls into more than one
class should be avoided as it often leads to subtle bugs.

24.5.1. Procedures with parameters

In a traditional imperative programming language some of the .mk �les could be described as
procedures. They take some input parameters and—after inclusion—provide a result in output
parameters. Since all variables inMakefile s have global scope care must be taken not to use parameter
names that have already another meaning. For example,PKGNAMEis a bad choice for a parameter name.

Procedures are completely evaluated at preprocessing time. That is, when calling a procedure all input
parameters must be completely resolvable. For example,CONFIGURE_ARGSshould never be an input
parameter since it is very likely that further text will be added after calling the procedure, which would
effectively apply the procedure to only a part of the variable. Also, references to other variables will be
modi�ed after calling the procedure.

A procedure can declare its output parameters either as suitable for use in preprocessing directives or as
only available at runtime. The latter alternative is for variables that contain references to other runtime
variables.

Procedures shall be written such that it is possible to call the procedure more than once. That is, the �le
must not contain multiple-inclusion guards.

Examples for procedures aremk/bsd.options.mk andmk/buildlink3/bsd.builtin.mk . To
express that the parameters are evaluated at load time, theyshould be assigned using the:= operator,
which should be used only for this purpose.

24.5.2. Actions taken on behalf of parameters

Action �les take some input parameters and may de�ne runtimevariables. They shall not de�ne loadtime
variables. There are action �les that are included implicitly by the pkgsrc infrastructure, while other must
be included explicitly.

An example for action �les ismk/subst.mk .

24.6. The order in which �les are loaded
PackageMakefile s usually consist of a set of variable de�nitions, and include the �le
../../mk/bsd.pkg.mk in the very last line. Before that, they may also include various other* .mk

�les if they need to query the availability of certain features like the type of compiler or the X11

127

Chapter 24. Design of the pkgsrc infrastructure

implementation. Due to the heavy use of preprocessor directives like .if and.for , the order in which
the �les are loaded matters.

This section describes at which point the various �les are loaded and gives reasons for that order.

24.6.1. The order in bsd.prefs.mk

The very �rst action inbsd.prefs.mk is to de�ne some essential variables likeOPSYS, OS_VERSION

andMACHINE_ARCH.

Then, the user settings are loaded from the �le speci�ed inMAKECONF, which is usuallymk.conf . After
that, those variables that have not been overridden by the user are loaded frommk/defaults/mk.conf .

After the user settings, the system settings and platform settings are loaded, which may override the user
settings.

Then, the tool de�nitions are loaded. The tool wrappers are not yet in effect. This only happens when
building a package, so the proper variables must be used instead of the direct tool names.

As the last steps, some essential variables from the wrapperand the package system �avor are loaded, as
well as the variables that have been cached in earlier phasesof a package build.

24.6.2. The order in bsd.pkg.mk

First,bsd.prefs.mk is loaded.

Then, the various* -vars.mk �les are loaded, which �ll default values for those variables that have not
been de�ned by the package. These variables may later be usedeven in unrelated �les.

Then, the �lebsd.pkg.error.mk provides the targeterror-check that is added as a special
dependency to all other targets that useDELAYED_ERROR_MSGor DELAYED_WARNING_MSG.

Then, the package-speci�c hacks fromhacks.mk are included.

Then, various other �les follow. Most of them don't have any dependencies on what they need to have
included before or after them, though some do.

The code to checkPKG_FAIL_REASONandPKG_SKIP_REASONis then executed, which restricts the use
of these variables to all the �les that have been included before. Appearances in later �les will be silently
ignored.

Then, the �les for the main targets are included, in the orderof later execution, though the actual order
should not matter.

At last, some more �les are included that don't set any interesting variables but rather just de�ne make
targets to be executed.

128

Chapter 25.

Regression tests

The pkgsrc infrastructure consists of a large codebase, andthere are many corners where every little bit
of a �le is well thought out, making pkgsrc likely to fail as soon as anything is changed near those parts.
To prevent most changes from breaking anything, a suite of regression tests should go along with every
important part of the pkgsrc infrastructure. This chapter describes how regression tests work in pkgsrc
and how you can add new tests.

25.1. Running the regression tests
You �rst need to install thepkgtools/pkg_regress package, which provides thepkg_regress
command. Then you can simply run that command, which will runall tests in theregress category.

25.2. Adding a new regression test
Every directory in theregress category that contains a �le calledspec is considered a regression test.
This �le is a shell program that is included by thepkg_regresscommand. The following functions can
be overridden to suit your needs.

25.2.1. Overridable functions

These functions do not take any parameters. Although they are called in “set -e” mode, they don't stop at
the �rst failing command. See this StackOver�ow question (http://stackover�ow.com/q/4072984) for
details.

do_setup

This function prepares the environment for the test. By default it does nothing.

do_test

This function runs the actual test. By default, it callsTEST_MAKEwith the arguments
MAKEARGS_TESTand writes its output including error messages into the �leTEST_OUTFILE.

When de�ning this function, make sure that all output that needs to be checked is written to the
correct output �le. Example:

do_test() {
echo "Example output"

} 1>$TEST_OUTFILE 2>&1

129

Chapter 25. Regression tests

check_result

This function is run after the test and is typically used to compare the actual output from the one
that is expected. It can make use of the various helper functions from the next section. Example:

check_result() {
exit_status 0
output_require "Example"
output_require "^[[:alpha:]+[[:space:]][[:alpha:]]{6 }$"
output_prohibit "no such file or directory"

}

do_cleanup

This function cleans everything up after the test has been run. By default it does nothing.

25.2.2. Helper functions

exit_status expected

This function compares the exitcode of thedo_testfunction with its �rst parameter. If they differ,
the test will fail.

output_require regex...

This function checks for each of its parameters if the outputfrom do_testmatches the extended
regular expression. If it does not, the test will fail. Example:

output_require "looks fine"
output_require "^[[:alpha:]+[[:space:]][[:alpha:]]{6 }$"

output_prohibit(regex...)

This function checks for each of its parameters if the outputfrom do_test()doesnot match the
extended regular expression. If any of the regular expressions matches, the test will fail.

130

Chapter 26.

Porting pkgsrc

The pkgsrc system has already been ported to many operating systems, hardware architectures and
compilers. This chapter explains the necessary steps to make pkgsrc even more portable.

26.1. Porting pkgsrc to a new operating system
To port pkgsrc to a new operating system (calledMyOSin this example), you need to touch the following
�les:

pkgtools/bootstrap-mk-files/files/mods/ MyOS.sys.mk

This �le contains some basic de�nitions, for example the name of the C compiler.

mk/bsd.prefs.mk

Insert code that de�nes the variablesOPSYS, OS_VERSION, LOWER_OS_VERSION, LOWER_VENDOR,
MACHINE_ARCH, OBJECT_FMT, APPEND_ELF, and the other variables that appear in this �le.

mk/platform/ MyOS.mk

This �le contains the platform-speci�c de�nitions that areused by pkgsrc. Start by copying one of
the other �les and edit it to your needs.

mk/tools/tools. MyOS.mk

This �le de�nes the paths to all the tools that are needed by one or the other package in pkgsrc, as
well as by pkgsrc itself. Find out where these tools are on your platform and add them.

Now, you should be able to build some basic packages, likelang/perl5 , shells/bash .

131

Appendix A.

A simple example package:
bison

We checked to �nd a piece of software that wasn't in the packages collection, and picked GNU bison.
Quite why someone would want to havebison when Berkeleyyaccis already present in the tree is
beyond us, but it's useful for the purposes of this exercise.

A.1. �les

A.1.1. Make�le

$NetBSD$
#

DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}

MAINTAINER= pkgsrc-users@NetBSD.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.ht ml
COMMENT= GNU yacc clone

GNU_CONFIGURE= yes
INFO_FILES= yes

.include "../../mk/bsd.pkg.mk"

A.1.2. DESCR

GNU version of yacc. Can make re-entrant parsers, and numero us other
improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.

A.1.3. PLIST

@comment $NetBSD$
bin/bison
man/man1/bison.1.gz

132

Appendix A. A simple example package: bison

share/bison.simple
share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes withpkgtools/pkglint which helps to check the contents of
these �les. After installation it is quite easy to use, just change to the directory of the package you wish
to examine and executepkglint :

$ pkglint
looks fine.

Depending on the supplied command line arguments (see pkglint(1)), more checks will be performed.
Use e.g.pkglint -Call -Wall for a very thorough check.

A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:

cd /usr/pkgsrc/lang

mkdir bison
cd bison
mkdir patches

CreateMakefile , DESCRandPLIST (seeChapter 11) then continue with fetching the dist�le:

make fetch
>> bison-1.25.tar.gz doesn't seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gn u//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25 .tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/sy stems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bi son-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/Fr eeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfil es//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:8 0/)
Successfully retrieved file.

Generate the checksum of the dist�le intodistinfo :

make makedistinfo

Now compile:

make
>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25
===> Patching for bison-1.25

133

Appendix A. A simple example package: bison

===> Ignoring empty patch directory
===> Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFIL E1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -g -o bison LR0.o allocate.o closure.o conflicts.o deriv es.o files.o getargs.o gram.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./biso n.simple > bison.s1

Everything seems OK, so install the �les:

make install
>> Checksum OK for bison-1.25.tar.gz.
===> Installing for bison-1.25

134

Appendix A. A simple example package: bison

sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg /info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.in fo *
install -c -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/s hare/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/ pkg/share/bison.hairy
cd .; for f in bison.info * ; do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info /$f;
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/ man/man1/bison.1
===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with pkg_delete bison. Should you decide
that you want a binary package, do this now:

make package
>> Checksum OK for bison-1.25.tar.gz.
===> Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison- 1.25.tgz'

Now that you don't need the source and object �les any more, clean up:

make clean
===> Cleaning for bison-1.25

135

Appendix B.

Build logs

B.1. Building �glet

make
===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn't seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.fi glet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as pass word.
230-You are user #5 of 500 simultaneous users allowed.
230-
230- ___ _ _ _
230- | _| |_ ___ ___| |_|___ ___ ___ ___
230- | _| _| . |_| . | | | . |_| . | _| . |
230- |_| |_| | _|_| _|_|_|_ |_|___|_| |_ |
230- |_| |_| |___| |___|
230-
230- ** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are log ged. If you
230-do not like this, please disconnect now.
230-
230-This archive is available via
230-
230-HTTP: http://ftp.plig.org/
230-FTP: ftp://ftp.plig.org/ (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)
230-
230-Please email comments, bug reports and requests for pac kages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250- ftp://ftp.figlet.org/pub/figlet/

136

Appendix B. Build logs

250-
250-The official FIGlet web page is:
250- http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org . If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; tra nsfer starting for figlet221.tar.gz
38% | ************** | 65800 64.16 KB/s 00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9] * : ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DD EFAULTFONTFILE=\"standard.flf\" figlet.c
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#
make install
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/ * .flf /usr/pkg/share/figlet
cp fonts/ * .flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#

137

Appendix B. Build logs

B.2. Packaging �glet

make package
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/f iglet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#

138

Appendix C.

Directory layout of the pkgsrc
FTP server

As in other big projects, the directory layout of pkgsrc is quite complex for newbies. This chapter
explains where you �nd things on the FTP server. The base directory onftp.NetBSD.org is
/pub/pkgsrc/ (ftp://ftp.NetBSD.org/pub/pkgsrc/). On other servers itmay be different, but inside this
directory, everything should look the same, no matter on which server you are. This directory contains
some subdirectories, which are explained below.

C.1. distfiles : The distributed source �les
The directorydistfiles contains lots of archive �les from all pkgsrc packages, which are mirrored
here. The subdirectories are called after their package names and are used when the distributed �les have
names that don't explicitly contain a version number or are otherwise too generic (for example
release.tar.gz).

C.2. misc : Miscellaneous things
This directory contains things that individual pkgsrc developers �nd worth publishing.

C.3. packages : Binary packages
This directory contains binary packages for the various platforms that are supported by pkgsrc. Each
subdirectory is of the formOPSYS/ARCH/OSVERSION_TAG. The meaning of these variables is:

• OPSYSis the name of the operating system for which the packages have been built. The name is taken
from the output of theunamecommand, so it may differ from the one you are used to hear.

• ARCHis the hardware architecture of the platform for which the packages have been built. It also
includes theABI (Application Binary Interface) for platforms that have several of them.

• OSVERSIONis the version of the operating system. For version numbers that change often (for
example NetBSD-current), the often-changing part should be replaced with anx , for example4.99.x .

• TAGis either20xx Qy for a stable branch, orhead for packages built from the HEAD branch. The
latter should only be used when the packages are updated on a regular basis. Otherwise the date from
checking out pkgsrc should be appended, for examplehead_20071015 .

139

Appendix C. Directory layout of the pkgsrc FTP server

The rationale for exactly this scheme is that the pkgsrc users looking for binary packages can quickly
click through the directories on the server and �nd the best binary packages for their machines. Since
they usually know the operating system and the hardware architecture, OPSYS and ARCH are placed
�rst. After these choices, they can select the best combination of OSVERSION and TAG together, since
it is usually the case that packages stay compatible betweendifferent version of the operating system.

In each of these directories, there is a whole binary packages collection for a speci�c platform. It has a
directory calledAll which contains all binary packages. Besides that, there arevarious category
directories that contain symbolic links to the real binary packages.

C.4. reports : Bulk build reports
Here are the reports from bulk builds, for those who want to �xpackages that didn't build on some of the
platforms. The structure of subdirectories should look like the one inSection C.3.

C.5. current , pkgsrc-20 xx Qy : source packages
These directories contain the “real” pkgsrc, that is the �les that de�ne how to create binary packages
from source archives.

The directorypkgsrc contains a snapshot of the CVS repository, which is updated regularly. The �le
pkgsrc.tar.gz contains the same as the directory, ready to be downloaded asa whole.

In the directories for the quarterly branches, there is an additional �le called pkgsrc-20 xx Qy .tar.gz ,
which contains the state of pkgsrc when it was branched.

140

Appendix D.

Editing guidelines for the pkgsrc
guide

This section contains information on editing the pkgsrc guide itself.

D.1. Make targets
The pkgsrc guide's source code is stored inpkgsrc/doc/guide/files , and several �les are created
from it:

• pkgsrc/doc/pkgsrc.txt

• pkgsrc/doc/pkgsrc.html

• http://www.NetBSD.org/docs/pkgsrc/

• http://www.NetBSD.org/docs/pkgsrc/pkgsrc.pdf: The PDFversion of the pkgsrc guide.

• http://www.NetBSD.org/docs/pkgsrc/pkgsrc.ps: PostScript version of the pkgsrc guide.

D.2. Procedure
The procedure to edit the pkgsrc guide is:

1. Make sure you have the packages needed to regenerate the pkgsrc guide (and other XML-based
NetBSD documentation) installed. These are automaticallyinstalled when you install the
meta-pkgs/pkgsrc-guide-tools package.

2. Runcd doc/guideto get to the right directory. All further steps will take place here.

3. Edit the XML �le(s) in files/ .

4. Runbmake to check the pkgsrc guide for valid XML and to build the �nal output �les. If you get
any errors at this stage, you can just edit the �les, as there are only symbolic links in the working
directory, pointing to the �les infiles/ .

5. (cd �les && cvs commit)

6. Runbmake clean && bmake to regenerate the output �les with the proper RCS Ids.

7. Runbmake regento install and commit the �les in bothpkgsrc/doc andhtdocs .

Note: If you have added, removed or renamed some chapters, you need to synchronize them
using cvs add or cvs delete in the htdocs directory.

141

Appendix D. Editing guidelines for the pkgsrc guide

142

	The pkgsrc guide
	Table of Contents
	List of Tables
	Chapter 1.
	What is pkgsrc?
	1.1. Introduction
	1.1.1. Why pkgsrc?
	1.1.2. Supported platforms

	1.2. Overview
	1.3. Terminology
	1.3.1. Roles involved in pkgsrc

	1.4. Typography

	I. The pkgsrc user's guide
	Chapter 2.
	Where to get pkgsrc and how to keep it uptodate
	2.1. Getting pkgsrc for the first time
	2.1.1. As tar archive
	2.1.2. Via anonymous CVS

	2.2. Keeping pkgsrc uptodate
	2.2.1. Via tar files
	2.2.2. Via CVS
	2.2.2.1. Switching between different pkgsrc branches
	2.2.2.2. What happens to my changes when updating?

	Chapter 3.
	Using pkgsrc on systems other than NetBSD
	3.1. Binary distribution
	3.2. Bootstrapping pkgsrc

	Chapter 4.
	Using pkgsrc
	4.1. Using binary packages
	4.1.1. Finding binary packages
	4.1.2. Installing binary packages
	4.1.3. Deinstalling packages
	4.1.4. Getting information about installed packages
	4.1.5. Checking for security vulnerabilities in installed packages
	4.1.6. Finding if newer versions of your installed packages are in pkgsrc
	4.1.7. Other administrative functions

	4.2. Building packages from source
	4.2.1. Requirements
	4.2.2. Fetching distfiles
	4.2.3. How to build and install

	Chapter 5.
	Configuring pkgsrc
	5.1. General configuration
	5.2. Variables affecting the build process
	5.3. Variables affecting the installation process
	5.4. Selecting and configuring the compiler
	5.4.1. Selecting the compiler
	5.4.2. Additional flags to the compiler (CFLAGS)
	5.4.3. Additional flags to the linker (LDFLAGS)

	5.5. Developer/advanced settings
	5.6. Selecting Build Options

	Chapter 6.
	Creating binary packages
	6.1. Building a single binary package
	6.2. Settings for creation of binary packages

	Chapter 7.
	Creating binary packages for everything in pkgsrc (bulk builds)
	7.1. Preparations
	7.2. Running a pbulkstyle bulk build
	7.2.1. Configuration

	7.3. Requirements of a full bulk build
	7.4. Creating a multiple CDROM packages collection
	7.4.1. Example of cdpack

	Chapter 8.
	Directory layout of the installed files
	8.1. File system layout in ${LOCALBASE}
	8.2. File system layout in ${VARBASE}

	Chapter 9.
	Frequently Asked Questions
	9.1. Are there any mailing lists for pkgrelated discussion?
	9.2. Utilities for package management (pkgtools)
	9.3. How to use pkgsrc as nonroot
	9.4. How to resume transfers when fetching distfiles?
	9.5. How can I install/use modular X.org from pkgsrc?
	9.6. How to fetch files from behind a firewall
	9.7. How to fetch files from HTTPS sites
	9.8. How do I tell make fetch to do passive FTP?
	9.9. How to fetch all distfiles at once
	9.10. What does Don't know how to make /usr/share/tmac/tmac.andoc mean?
	9.11. What does Could not find bsd.own.mk mean?
	9.12. Using 'sudo' with pkgsrc
	9.13. How do I change the location of configuration files?
	9.14. Automated security checks
	9.15. Why do some packages ignore my CFLAGS?
	9.16. A package does not build. What shall I do?
	9.17. What does Makefile appears to contain unresolved cvs/rcs/??? merge conflicts mean?

	II. The pkgsrc developer's guide
	Chapter 10.
	Creating a new pkgsrc package from scratch
	10.1. Common types of packages
	10.1.1. Perl modules
	10.1.2. Python modules and programs

	10.2. Examples
	10.2.1. How the www/nvu package came into pkgsrc
	10.2.1.1. The initial package
	10.2.1.2. Fixing all kinds of problems to make the package work
	10.2.1.3. Installing the package

	Chapter 11.
	Package components files, directories and contents
	11.1. Makefile
	11.2. distinfo
	11.3. patches/*
	11.3.1. Structure of a single patch file
	11.3.2. Creating patch files
	11.3.3. Sources where the patch files come from
	11.3.4. Patching guidelines
	11.3.5. Feedback to the author

	11.4. Other mandatory files
	11.5. Optional files
	11.5.1. Files affecting the binary package
	11.5.2. Files affecting the build process
	11.5.3. Files affecting nothing at all

	11.6. work*
	11.7. files/*

	Chapter 12.
	Programming in Makefiles
	12.1. Caveats
	12.2. Makefile variables
	12.2.1. Naming conventions

	12.3. Code snippets
	12.3.1. Adding things to a list
	12.3.2. Echoing a string exactly asis
	12.3.3. Passing CFLAGS to GNU configure scripts
	12.3.4. Handling possibly empty variables

	Chapter 13.
	PLIST issues
	13.1. RCS ID
	13.2. Semiautomatic PLIST generation
	13.3. Tweaking output of make printPLIST
	13.4. Variable substitution in PLIST
	13.5. Man page compression
	13.6. Changing PLIST source with PLISTSRC
	13.7. Platformspecific and differing PLISTs
	13.8. Buildspecific PLISTs
	13.9. Sharing directories between packages

	Chapter 14.
	Buildlink methodology
	14.1. Converting packages to use buildlink3
	14.2. Writing buildlink3.mk files
	14.2.1. Anatomy of a buildlink3.mk file
	14.2.2. Updating BUILDLINKAPIDEPENDS.pkg and BUILDLINKABIDEPENDS.pkg in buildlink3.mk files

	14.3. Writing builtin.mk files
	14.3.1. Anatomy of a builtin.mk file
	14.3.2. Global preferences for native or pkgsrc software

	Chapter 15.
	The pkginstall framework
	15.1. Files and directories outside the installation prefix
	15.1.1. Directory manipulation
	15.1.2. File manipulation

	15.2. Configuration files
	15.2.1. How PKGSYSCONFDIR is set
	15.2.2. Telling the software where configuration files are
	15.2.3. Patching installations
	15.2.4. Disabling handling of configuration files

	15.3. System startup scripts
	15.3.1. Disabling handling of system startup scripts

	15.4. System users and groups
	15.5. System shells
	15.5.1. Disabling shell registration

	15.6. Fonts
	15.6.1. Disabling automatic update of the fonts databases

	Chapter 16.
	Options handling
	16.1. Global default options
	16.2. Converting packages to use bsd.options.mk
	16.3. Option Names
	16.4. Determining the options of dependencies

	Chapter 17.
	The build process
	17.1. Introduction
	17.2. Program location
	17.3. Directories used during the build process
	17.4. Running a phase
	17.5. The fetch phase
	17.5.1. What to fetch and where to get it from
	17.5.2. How are the files fetched?

	17.6. The checksum phase
	17.7. The extract phase
	17.8. The patch phase
	17.9. The tools phase
	17.10. The wrapper phase
	17.11. The configure phase
	17.12. The build phase
	17.13. The test phase
	17.14. The install phase
	17.15. The package phase
	17.16. Cleaning up
	17.17. Other helpful targets

	Chapter 18.
	Tools needed for building or running
	18.1. Tools for pkgsrc builds
	18.2. Tools needed by packages
	18.3. Tools provided by platforms

	Chapter 19.
	Making your package work
	19.1. General operation
	19.1.1. How to pull in usersettable variables from mk.conf
	19.1.2. User interaction
	19.1.3. Handling licenses
	19.1.3.1. Adding a package with a new license
	19.1.3.2. Change to the license

	19.1.4. Restricted packages
	19.1.5. Handling dependencies
	19.1.6. Handling conflicts with other packages
	19.1.7. Packages that cannot or should not be built
	19.1.8. Packages which should not be deleted, once installed
	19.1.9. Handling packages with security problems
	19.1.10. How to handle incrementing versions when fixing an existing package
	19.1.11. Substituting variable text in the package files (the SUBST framework)

	19.2. The fetch phase
	19.2.1. Packages whose distfiles aren't available for plain downloading
	19.2.2. How to handle modified distfiles with the 'old' name
	19.2.3. Packages hosted on github.com
	19.2.3.1. Fetch based on a tagged release
	19.2.3.2. Fetch based on a specific commit
	19.2.3.3. Fetch based on release

	19.3. The configure phase
	19.3.1. Shared libraries libtool
	19.3.2. Using libtool on GNU packages that already support libtool
	19.3.3. GNU Autoconf/Automake

	19.4. Programming languages
	19.4.1. C, C++, and Fortran
	19.4.2. Java
	19.4.3. Packages containing perl scripts
	19.4.4. Packages containing shell scripts
	19.4.5. Other programming languages

	19.5. The build phase
	19.5.1. Compiling C and C++ code conditionally
	19.5.1.1. C preprocessor macros to identify the operating system
	19.5.1.2. C preprocessor macros to identify the hardware architecture
	19.5.1.3. C preprocessor macros to identify the compiler

	19.5.2. How to handle compiler bugs
	19.5.3. Undefined reference to ...
	19.5.3.1. Special issue: The SunPro compiler

	19.5.4. Running out of memory

	19.6. The install phase
	19.6.1. Creating needed directories
	19.6.2. Where to install documentation
	19.6.3. Installing highscore files
	19.6.4. Adding DESTDIR support to packages
	19.6.5. Packages with hardcoded paths to other interpreters
	19.6.6. Packages installing perl modules
	19.6.7. Packages installing info files
	19.6.8. Packages installing man pages
	19.6.9. Packages installing GConf data files
	19.6.10. Packages installing scrollkeeper/rarian data files
	19.6.11. Packages installing X11 fonts
	19.6.12. Packages installing GTK2 modules
	19.6.13. Packages installing SGML or XML data
	19.6.14. Packages installing extensions to the MIME database
	19.6.15. Packages using intltool
	19.6.16. Packages installing startup scripts
	19.6.17. Packages installing TeX modules
	19.6.18. Packages supporting running binaries in emulation
	19.6.19. Packages installing hicolor theme icons
	19.6.20. Packages installing desktop files

	19.7. Marking packages as having problems

	Chapter 20.
	Debugging
	Chapter 21.
	Submitting and Committing
	21.1. Submitting binary packages
	21.2. Submitting source packages (for nonNetBSDdevelopers)
	21.3. General notes when adding, updating, or removing packages
	21.4. Commit Messages
	21.5. Committing: Adding a package to CVS
	21.6. Updating a package to a newer version
	21.7. Renaming a package in pkgsrc
	21.8. Moving a package in pkgsrc

	Chapter 22.
	Frequently Asked Questions
	Chapter 23.
	GNOME packaging and porting
	23.1. Meta packages
	23.2. Packaging a GNOME application
	23.3. Updating GNOME to a newer version
	23.4. Patching guidelines

	III. The pkgsrc infrastructure internals
	Chapter 24.
	Design of the pkgsrc infrastructure
	24.1. The meaning of variable definitions
	24.2. Avoiding problems before they arise
	24.3. Variable evaluation
	24.3.1. At load time
	24.3.2. At runtime

	24.4. How can variables be specified?
	24.5. Designing interfaces for Makefile fragments
	24.5.1. Procedures with parameters
	24.5.2. Actions taken on behalf of parameters

	24.6. The order in which files are loaded
	24.6.1. The order in bsd.prefs.mk
	24.6.2. The order in bsd.pkg.mk

	Chapter 25.
	Regression tests
	25.1. Running the regression tests
	25.2. Adding a new regression test
	25.2.1. Overridable functions
	25.2.2. Helper functions

	Chapter 26.
	Porting pkgsrc
	26.1. Porting pkgsrc to a new operating system

	Appendix A.
	A simple example package: bison
	A.1. files
	A.1.1. Makefile
	A.1.2. DESCR
	A.1.3. PLIST
	A.1.4. Checking a package with pkglint

	A.2. Steps for building, installing, packaging

	Appendix B.
	Build logs
	B.1. Building figlet
	B.2. Packaging figlet

	Appendix C.
	Directory layout of the pkgsrc FTP server
	C.1. distfiles: The distributed source files
	C.2. misc: Miscellaneous things
	C.3. packages: Binary packages
	C.4. reports: Bulk build reports
	C.5. current, pkgsrc20xxQy: source packages

	Appendix D.

