The pkgsrc guide

Documentation on the NetBSD packages
system

(2018/01/01)

Alistair Crooks
agc@NetBSD.org

Hubert Feyrer
hubertf@NetBSD.org

The pkgsrc Developers

The pkgsrc guide: Documentation on the NetBSD packages syst em
by Alistair Crooks, Hubert Feyrer, The pkgsrc Developers

Published 2018/01/01 01:26:07
Copyright © 1994-2018 The NetBSD Foundation, Inc

pkgsrc is a centralized package management system forliHeinpperating systems. This guide provides
information for users and developers of pkgsrc. It covessailtation of binary and source packages, creation of
binary and source packages and a high-level overview aheunfrastructure.

Table of Contents

YT P L RS o] (0] (ol TR R TSP PPURTR 1.
R 1o (o To [8 o £ o R TSR U 1
O I VAV 0V o] (o] {30 RSO RPRP 1
1.1.2. Supported PlatfOrmS.t 2.
L2, OVEIVIBW. ...ttt ettt e ettt e e oo ookttt e e e e e e e e st ettt e e e e e e eamneaee e e e s eannbabneeeaaas 3.
1.3, TOIMINOIOQY. c .t eiiiiiie ettt ettt e e e e ettt e e e e e e s e e enb e e et e aaansnseeeaaaaeeaaannnd 4
1.3.1. ROIES INVOIVEA 1N PKOSEC ... tttteeieeieeee ettt e et e e e ee e e e e 5..
S 1 V7o o T | =] o /SRR 5.
[. The PKOSIC USEI'S QUILE......ciiiiiiiei ittt et e ettt e e ettt e ettt e e e snt e e e emnaeesnbeeeeeeans 1
2. Where to get pkgsrc and how to keep it up-to-date.........cccccceevviiiiiiiie e 2
2.1. Getting pkgsrc for the rsttime ..o 2.
2,10, ASHAr ArCNIVE. ... 2.
2.1.2. Via anonymOoUS CV.S.....ccooii it e e e s an e e e e e e annrraneeae e e e 3.
2.2. Keeping PKOSIC UP-T0-0aLE..........uuiiiiiiiee e iicciiiieei e e e e e s vrmner e e e s arr e e e e e e nenneees 3.
22,1 VIBEAE 8S...iiiie et 4
- W O S 4
2.2.2.1. Switching between different pkgsrc branches.............ccccoeevvvnnenn. 4.
2.2.2.2. What happens to my changes when updating?..............ccccvveeeen.. 4.
3. Using pkgsrc on systems other than NetBSD.............cccoiiiiiiie e eeeseeee e 5.
3.1, Binary diStriDULIONL.......coiiii et e e 5
3.2. BOOtSIraPPING PKOSEC. «. ettt ettt e et e e e e e e e e e abb e e e eeeeeaan 5
A USING PKOSIC. . eeeeette ettt ettt e e ettt e e e e e e e e e s nbabeeeeeaaeaeseannnesaneeannnnsnnseeeeeeeessens 6.
4.1. USiNgG DINArY PACKAGES. ... eeieeiaaiiiiiiie et e et e e e ee e e e e e e annees 6..
4.1.1. Finding DIiNary Packages.cooouiiiiiiiiiiiieaee et 6..
4.1.2. Installing binary packages. ...t 6.
4.1.3. Deinstalling PACKAGES.uuueeeiieeaii ittt 1.
4.1.4. Getting information about installed packages..........ccccooeeeeeiniiiiiiiiiie s 7
4.1.5. Checking for security vulnerabilities in installealckages............ccccccceeiennes 7.
4.1.6. Finding if newer versions of your installed packaaesin pkgsrc.................. 8
4.1.7. Other administrative fUNCHONS. ... 8
4.2. Building packages from SOUICE.........uuiiiiiaiiiiiiiiieie ettt 9.
4.2.0. REOQUITEIMENTS ...eeiiitieeee ittt e e e e et s e e e sttt et e e ee e e e e s s annbbbeeeeaaaaeeannnes Q.
4.2.2. FetChing diStIES.......uuieiiiiiiee ettt 9.
4.2.3. How to build @and iNStall............occuiiiiiiiiii e 10
I Oto T o 10 [o i o] <o] o RRRR 12
5.1. GeNEeral CON QUIALION........uuuiiiieiee e et ee e e e e e s s ieeeees e s e e e e e e s s s s aeeaeeeeen 12.
5.2. Variables affecting the build ProCess.........ccvvveiiiiiiie e 12
5.3. Variables affecting the installation ProCess............cccvvviivieiiiiiie e 13
5.4. Selecting and con guring the CoOmpiler............cccovvevieii e 14
5.4.1. Selecting the COMPILEr.........ccuuiiiiii e 14
5.4.2. Additional ags to the COMPIIEIAFLAGSc.vviiiiiiiiiee e 15
5.4.3. Additional ags to the lINKEIDFLAGSccvvvieiiiiiiie e 15
5.5. Developer/advanced SEtNGS.cuuiie i 15
5.6. Selecting Build OPLIONS.cooiiiiiieiiiiiiie e 16.
6. Creating binary PaCKAgES.cooi it e e et e e e e aee e e 17

6.1. Building a single binary package..........ccccuvviriiiieeei i eeeeete e e 17

6.2. Settings for creation of binary packages............cccovvviieiii e 17

7. Creating binary packages for everything in pkgsrc (bulibkds)cccoovvvereeeeniiiinnnnn, 18.

A O o (=1 o T T = V1o o PP PRRPPPRRP 18

7.2. Running a pbulk-style bulk BUild ... 18

4% T o] o [T = 1o PSRRI 18.

7.3. Requirements of a full bulk build.............ccoriiiii e 20

7.4. Creating a multiple CD-ROM packages collection..........cccccoeevcvvveevireeenesiceeenn, 20

7.4.1. Example of CAPaCK.......ccoiiiiiiiiiiiie e 20

8. Directory layout of the INStalled 1€S.........cccciiiiiiie e 21

8.1. File system layout ifli{LOCALBASE]ccccitvriieiieeeeesiesiereereee e e sennmneaeeeeesnnnenneens 21

8.2. File system layOut iBi{VARBASE]cccceeiiiiiiiiiieireeee e e s seiiaeee s seesesaneeeeeeeesnnnsnnnees 23

9. Frequently Asked QUESHIONS.........uiiiiieiiiiiiieiiie e e e e e e eeeees e e e e e e e e s s sranaeaeeeaaeeeeennnns 24

9.1. Are there any mailing lists for pkg-related discus8ion..............ccccvvvvivevee e, 24.

9.2. Utilities for package management (PKGtOOIS)........c.uuveiiiiiiiiiiiiiiiee e 24

9.3. HOW t0 USE PKGSIC @S NMOMN-TODL........uiiiiiiiieiiaitiiieeeee e e e e eeeeee e ee e e e e e e eennes 25

9.4. How to resume transfers when fetching dist 18S2..........oooiiiiieeeen, 26

9.5. How can | install/use modular X.org from pkgsItC?.........cceeevieiiiiiiiiiiiiiiee e 26

9.6. How to fetch les from behind a rewall.............ccouiiiiiice e, 26

9.7. How to fetch 1es from HTTPS SIteS........uiiiiiiiiiiiiiiiiiee et 26

9.8. How do | tellmake fetchto do passive FTR2..........i e 27

9.9. How to fetch all dist 1eS at ONCE........uuviiiiiiiii e 27

9.10. What does “Don't know how to make /usr/share/tmacétaradoc” mean?............ 27

9.11. What does “Could not nd bsd.own.mk” mean?............cccccoviimiiiiiiiieeeinniieeeenn. 28

9.12. USING 'SUAO" WIth PKOSIC.....eiieiiiiiiiiiiii ettt e e e e e e 28

9.13. How do | change the location of con guration 1eS2.............ccciiiiiiiiiiiiiiiiiiee 28

9.14. Automated security CheCKS............cuiiiiii e 29

9.15. Why do some packages ignore BFLAGScccvi it 29

9.16. A package does not build. What shall [dO?............cccvveeeieiiiiie e 29
9.17. What does “Make le appears to contain unresolvedrcgs??? merge con icts” mean?

30

[I. The pKgSIC developer's QUILE...........ooiiiiii ettt a e 31

10. Creating a new pkgsrc package from scratCh..........cccccceeeiiiiiii e, 32

10.1. Common types Of PACKAGES.uuuieiiiiiiiiiiiiee et 33

10.1.1. Perl MOAUIES.......cooiiiiiiiieiiiiiee ettt e e 33.

10.1.2. Python modules and programs.........cccueeeereeeereiiiiiieiereeeeceercreeeeeeesennanes 33

10,2, EXAMPIES ..ottt ettt 34

10.2.1. How the www/nvu package came into PKGSIC........ccvvvveeiiiiiieeeiiiieeeene 34.

10.2.1.1. The initial PACKAGE........cuveieeiiiiiie ettt 34

10.2.1.2. Fixing all kinds of problems to make the packagekwo................ 35

10.2.1.3. Installing the package............cccceeeiiiiiiiiiiiiee e 37

11. Package components - les, directories and contents............ccceeeeeeeiiiiiiiiiieieceeeceieen 39

I 1Y = = 1O 39

2o 1111 o TSP PRRSPPPPP 41

LL.3.PAICNES, % ciiiiiiiiiii e ————— et ————————— 41

11.3.1. Structure of a single patch le.........oooiii 41

11.3.2. Creating patCh 1€S.......oooiiiiie e 41

11.3.3. Sources where the patch les come from.........cccvveveieee i 42

11.3.4. Patching guIidelings...........c..vuiiiiiiee et 42
11.3.5. Feedback to the @Uuthor..........ccoiiiiiiiii e 43
11.4. Other MaNdatory l€S......uuuiii i e e e e s e e e e arr e e e e e e e e 43.
308 S TR @ T o) o 1 = L = 44
11.5.1. Files affecting the binary package...........ccccceeeeviviiiiiiiiieee e 44
11.5.2. Files affecting the build proCess...........cccccvvvieiieei e 45
11.5.3. Files affecting nothing at all...........cccevvivriie e 45
0 G 45
0 0 1 Y | o
12. Programming iMMakefile S.....cccuuuvieiiieieeeiiiiiiiiie e e e ee e s s meeees e s st re e e e e e e e s s e snnnaeneeeaeaeeen a7.
D T = Y = (PP 47
12.2.Makefile VaNADIES.......cooiiiiiiii e a7.
12.2.1. NamiNgG CONVENTIONSuveiiieeeeeiiiiiiiieeeeeeeeessesseeeeesssnnsanneeereeaeeesnnnnnenes 48
D2 T @0 To (SR 1] o] o[ST OUPPURS 48
12.3.1. AAding thiNgS t0 @ lISL.....eeeeieiieeeei et 48
12.3.2. Echoing a String eXactly @S:iS......ccuiiiiiiiiiiiiiiiiiie e 49
12.3.3. PassSinGFLAGSIO GNU CON QUIE SCHPLS....ceviieiieiiiiiiiiie e 49
12.3.4. Handling possibly empty variables..........cccooiiiieeee e 49
L3, P LIS T IS SUBS .ttt ettt ettt ettt me et e e e e e e e ek bbb ettt e e e e e e e e n bbbt e e e e e e aereeeaaeeeaaaaann 51
G0 R = S | B T PR P TSP PP 51
13.2. Semi-automatiBLIST gENEIAtiON........ccuiieiaii ittt e e ettt e ee e ee e e e 51
13.3. Tweaking output ahake print-PLIST ... 51
13.4. Variable substitution in PLIST.........ccouiiiiiiiee e 51
13.5. Man PAgE COMPIESSION......uuiiiiiiie ittt et ea e e e e eeeeeea s eenbbe e e e e e e aeeesnnsbbaeeaeaeaas 52,
13.6. Changing PLIST SOUIce WIBLIST_SRC.....ccccuiiiiiiiiiiiiiiaee e e aesiiiieeeee e eeeremeeeaa e 53
13.7. Platform-speci c and differing PLISTS........cccuviiiiiii e 53
13.8. BUIIA-SPECT C PLIST S . iiiiiii ittt e e e e 53
13.9. Sharing directories between packages..........cccovveeiiiiiiiie e 53
14. Buildlink MethodolOgy.........cccouiiiiiiiiiiie et 55
14.1. Converting packages to use buildlink3.............cccoviriiiiee e 55
14.2. Writingbuildlink3.mk LS 56
14.2.1. Anatomy of a buildlink3.mK [€..........cccviriiiiiiee e 56
14.2.2. Updatin@UILDLINK_API_DEPENDS. pkg andBUILDLINK_ABI_DEPENDS. pkg in buildlink3.mk
58
14.3. Writingbuiltin.mk LS oo 59
14.3.1. Anatomy of &uiltin.mk I8 et ——— 59
14.3.2. Global preferences for native or pkgsrc software........cccccceevvevvvvennnnn. 60
15. The pKginstall frameEWOTKoociiiiieiee e e e e e e e eeeead 62
15.1. Files and directories outside the installation preX......cccccccevveviiveeeiee e ccciees 62
15.1.1. Directory manipulation............ccoeeeiiiiiieeiiieieee e 62
15.1.2. File ManipUlation...........c..eeiiiiiiiieiiiiiie e 63
15.2. CON QUIALION 1BS....eiiiiieeeiei ittt e et e e e e e e e e nneneees 63
15.2.1. HOWPKG_SYSCONFDIRS SEL.....ccceeeiiiiiiiiiiiiceeeeeeereeee e 64
15.2.2. Telling the software where con guration lesare..........cccccooviiiiiieeennnen 64
15.2.3. Patching installations...............eeiiiiiiiiie e 65
15.2.4. Disabling handling of con guration les..........ccccooiiiiiiiiiieiniiiieee 65
15.3. SYStEM StArTUP SCHPLS. ..ueeiiiiieeiie ettt e e e e et e e e e e e e s e eaeeeaeeaeaaans 65.

15.3.1. Disabling handling of system startup SCriptS...........ccccvvvirereeeeeeiicivnnnn 66

15.4. SyStem USEIS @Nd QIOUPS.....uuuurririeeeeeisiittieeerreeeesssssnmeeessssssssssnneseeeeessssnnsssnees 66
15.5. SYSIEM SIS ... oo 66
15.5.1. Disabling shell registration.............ccccceeeeieiiiviiiieie e ceeee e 67
RS G o] 1 T TP P TP PP PP PPPPPI Qa7
15.6.1. Disabling automatic update of the fonts datahases.............ccccccceerinnns 67

16. OPLioNS NANAIING.......eeiiiiiiiie ettt et e e e e e e e 68
16.1. Global default OptioNS..........cccciiiiriiie e 68.
16.2. Converting packages to USsE.optionS.MK ...vuvviiiieeeeeeisiiiiieieee e e e e s e snneeeeenens 68
16.3. OPLON NABMES.....eeiiiiiiiiie ettt st e e et e e e e bbbt e e e ens e e nnaeeas 70
16.4. Determining the options of dependencies...............ccccvvveveeeee s viccieeeeesssennn 1
17. THe DUIIA PrOCESS. .. .eieiiiiiiie ittt e et e e st e e en bt eeenne e et 72
0 I 1 1 o To {1 Tt 1o] o KO PP 72
17.2. Program [OCALION.coiuuiieeiiieie ettt et et e et e e e e e s abeeee e s sebeeenans 72
17.3. Directories used during the build process...........cccccceeeeiiiiiiiiiiiiniiisicieeeeeeeeen 3
17.4. RUNNING @ PRESE. ..cci i e ittt e e e et ee e e e e e e e e e benbe e e aans 73
17.5. TheEtChPRASE. ...t 73
17.5.1. What to fetch and where to get it fromyL.........ooooviiiiiii e, 74
17.5.2. How are the les fetched?.........oooii e 75
17.6. TheCheCKSUNDNASE......ccoiiii e 76.
17.7. ThEEXITACTPNASE. ...ttt ettt e e e e e e e e e e e e e 76
17.8. ThEPAICHPNASE. ...ttt a e mneeeas 76
17.9. TREOOISPRASE. ... e 77
17.10. TheNraPPEIPRASE. ...ccc ettt e et e e e e e e e e e s 71.
17.11. TRECON QUIE PRASE. ...ttt et e e e e e e e ee e s 11
17.12. ThEDUIIA PRESE...ccii it ee e 78
17.03. ThEESIPNASE. ...t e e e e e e 79
17.14. ThaNSEAI PRASE......eeiiiiiiie et 79
17.15. TheaCKagEINASE.eeeieiiiiiiie ettt e e 80
I LT @ 1= T [o [o U PPPRUPPP 81
17.17. Other helpful tArgeLS.cooi it 81.
18. Tools needed for building OF FUNNING..........cooiiiiii e 86
18.1. TOOIS fOr PKGSIC DUIIAS.uvieiieiiee e 86.
18.2. Tools needed by PACKAGES........cvuiiriieieeei ittt e e ae e e e e 86
18.3. Tools provided by platforms.............uviiiiieee e e e 86
19. Making Your PACKAGE WOTK............oiiiiiiiiii ettt 88
19.1. General OPEIatiQN.........ciii ittt e nes 88
19.1.1. How to pull in user-settable variables frotkconfccccceeviiiiivinennnnn. 88
19.2.2. USEI INLEFACHIQN.eiiiiiiiiiieiiiiie st ee s 88
19.1.3. HaNAliNG lICENSES.....c.ci ottt eee e e e e e e 89
19.1.3.1. Adding a package with a new license............cccccceeeeevivicvvnnennnn. 89.

19.1.3.2. Change to the liCENSE..........cciviiiiii e 90

19.1.4. ReStricted PACKAGES. ...ttt 20
19.1.5. Handling dependenCIeS...........uueeeiiiiaiiiiiiiiiiie e eee e 91
19.1.6. Handling con icts with other packages...........cccoueeiiieiiiiiiiiiiiiiec e 92
19.1.7. Packages that cannot or should not be.built.............cccccoiiiiiiinnl a3
19.1.8. Packages which should not be deleted, once intalle................ccccec.... 93
19.1.9. Handling packages with security problems............ccccccciiniiiiiiienneeennd a3

Vi

19.2.

19.3.

19.4.

19.5.

19.6.

19.1.10. How to handle incrementing versions when xing &isting package.....94

19.1.11. Substituting variable text in the package le®(BUBST framework).....94
THEEICNPRNASE. ..o e 95
19.2.1. Packages whose dist les aren't available for pthownloading.................. 95
19.2.2. How to handle modi ed dist les with the 'old' name.............c.ccccoovveees 96
19.2.3. Packages hosted on github.com...........ccccvvieiie e, 96

19.2.3.1. Fetch based on atagged release............ccccovvveveeeiiecciiiiiieeens 96

19.2.3.2. Fetch based on a SpPeci C COMMUL........ccveerreiiiiiiiiiirireeer e cnens, 97

19.2.3.3. Fetch based on release..........cccooeeviiiiiiiii e a7
THECON QUIE PRASE. ...t 97
19.3.1. Shared libraries - ibtaQLl...........c..cooiiiiiiiii e 97
19.3.2. Using libtool on GNU packages that already supatdal....................... 99
19.3.3. GNU AUtocoNf/AULOMAKE.cooiiiiiiei i 99
Programming laNQUAGES.eeeeiiiiiieei it reeee et 100
19.4.1. C, CH+, QN FOIIAN.uiiiiiiiie ettt e e e 100
L9.4.2. JAVA. ..ttt ettt bbb ameeeereen 100
19.4.3. Packages containing perl SCHPLS..........evviiiiiiiiiiiee e 100
19.4.4. Packages containing Shell SCHPLS.........ccoiiiiiiiiiiiiiiiiee e 101
19.4.5. Other programming lanQUAgES..........uuuriiiaaaaaiiiiiiieiee e e 101
THEDUIIA PRASE....eeeeeiiee et ee e e 101
19.5.1. Compiling C and C++ code conditionally.............ccccooviiiiiiiiiiiiinniiiiiens 101

19.5.1.1. C preprocessor macros to identify the operatistgm................. 101

19.5.1.2. C preprocessor macros to identify the hardwatgtacture.......... 102

19.5.1.3. C preprocessor macros to identify the compiler....................... 102
19.5.2. How to handle compiler bBugs........ccoooiiiiiiiiii e 102
19.5.3. Unde ned reference to ...l ... e 103

19.5.3.1. Special issue: The SunPro compiler...........ccccoveeieeniniiinnne. 103
19.5.4. RUNNING OUL Of MEMIOIY.....uiiiiiiiiiiiiiiiiiit e 103
ThENSLAll PRASE........eeeeee e 104
19.6.1. Creating needed dir€CIOLIESuiiiiiiiiee ettt 104
19.6.2. Where to install documentation..............cccooovviieiiiiiie e 104
19.6.3. Installing highSCOre 1€S..........ccooiiiiiiiiiiiiiei e 104
19.6.4. Adding DESTDIR support t0 packages.........cccuvveriiieeeeiiiiieeeeeiiiieseees 105
19.6.5. Packages with hardcoded paths to other intergreter...........cccccccveeenn. 105
19.6.6. Packages installing perl modules...........cccccoviiiieiiiieseee e 106
19.6.7. Packages installing info 1€S..........ocuiiiiiiiiii e 106
19.6.8. Packages installing man Pages.........cccoccveeeiiiiiee i sieeeeiie e 107
19.6.9. Packages installing GConf data 1eS..........ccccevviiiiiiiiiii e 107
19.6.10. Packages installing scrollkeeper/rarian da@a..l.............c..ccccvvvvveneennnn. 107
19.6.11. Packages installing X11 fONtS........ccooiuvrieiiiiiireiiiiiee e 108
19.6.12. Packages installing GTK2 modules...........ccccceeiiiiiiiiiiiie e, 108
19.6.13. Packages installing SGML or XML data.........ccceeeeviiiiiiniinineeenesiiiiens 108
19.6.14. Packages installing extensions to the MIME da&ba......................... 109
19.6.15. Packages using intltQQl............cccuiiiiiiiiiiiieeeee e 109
19.6.16. Packages installing startup SCrHptS........ccooiiuviiiiiiiieiie e 109
19.6.17. Packages installing TeX modules...........cccccoiiiiiiiiiiiiiiieineeeeee e 110
19.6.18. Packages supporting running binaries in emulatio........................... 110
19.6.19. Packages installing hicolor theme icons...........ccccccceiiiiiiiiiiiiee e 110

Vi

19.6.20. Packages installing deskiop 1eS........cccccoiiiiiiiiiiiii i 111

19.7. Marking packages as having problems............cccooeeriiiieiiiiiie e 111

{0 B 1= o 0o To 1o PR UPUPRPPTPPRN 112
21. Submitting and COMMITEING.......uveiiiiiiiiie e e 114
21.1. Submitting binary Packages..........ooiveiiiiiiiiie e 114

21.2. Submitting source packages (for non-NetBSD-dewi)p............cooecvvvvveneeennnn. 114
21.3. General notes when adding, updating, or removinggmaEK............cccccevvveeeeennns 114
21.4. COMMIE MESSAGES. ... eeeeieiitiiee et iteiee ettt e e et e e ree e e ettt e e s sbbete e e snbbeeeeanbeeeeenns 115
21.5. Committing: Adding a package to CVS........ccuviieiiiiiieeeiiiee e 115
21.6. Updating a package to & NEWET VEISION.ccuueeeiiiiiiiee it siieeeeeeeee s 116
21.7. Renaming a package in PKOSIC.......uuuiieiiiiiieeiiiiie et e e 116
21.8. Moving a package in PKOSIC.......uuiaiiiiiiiiiiiie it 117

22. Frequently ASked QUESHIONS.oiuiiiie it 118
23. GNOME packaging and POITING........c.cueeeiiiieieeiiiiiee et reeee et esnnneeeas 120
23.1. MELA PACKAGES. ... eeeitieeeeeeieiitee ittt e e ettt e e e e e e e e e bbb e e e e e e e e e e e ennnaeaaens 120
23.2. Packaging a GNOME applicatiOn..............ueeiiiiiiiiiiiiiieeice e 121

23.3. Updating GNOME t0 @ NEWET VEISION.cccuieiiiiiiiiiiiiiieeee e e aiieee e e 122
23.4. Patching QUIAEIINES........ooieee et 123

[Il. The pkgsrc infrastructure INtEINAISc.eeiiiiiiii et 124
24. Design of the pkgsrc iNfrastrUCtUre..........cooiiiiiiiiii e 125
24.1. The meaning of variable de NitioNS...............eeeiiiiiiii e 125
24.2. Avoiding problems before they ariSe ... 125
24.3. Variable evaluation.............cc.uuiiiiiiiii e 126
24.3. 1. AL 108 tIME...eeiiiiiiie ettt e et a e e e e e 126

24.3.2. AL TUNTIME. ..ttt e e e e e s et e e e e e e e e e neeeee s 126

24.4. How can variables be speci @d?........cccuuiiiiiiiiiiie e 126
24.5. Designing interfaces for Make le fragments...........cccooviiiiiiie e, 127
24.5.1. Procedures With parametersS.........cooiviiiiiiiiiiie et 127

24.5.2. Actions taken on behalf of parameters..........cccccv v, 127

24.6. The order in which les are loaded.............oooiiiiiiiiiiiiii e 127
24.6.1. The order ibsd.prefsS.mk ..ooeeeeiii i e 128

24.6.2. The order ibsd.pKg.MK ...ooooiiiiiiiiiiiiiieeeeeeeeeeee e reeee e e eeeeeeeeeveeeaes 128

ST = Te (=SS o] I =T £ SO 129
25.1. RUNNING the regreSSION tESIS.cciiiiiiiiiie e ee et serre e e e e e s snrrarneeeee e 129
25.2. Adding @ NEW regreSSION tESE.......c.uviie ettt e et 129
25.2.1. Overridable fUNCLONSoeeiiiiiiiie e 129

25.2.2. Helper fUNCHIONS.......ooiiiiii e 130

LI 0T a1 o o] (o L] (RO PPPP 131
26.1. Porting pkgsrc to a new operating SYSIEM..........ccoviuiiiiiiiieeen e veeenieeeen 131

A. A simple example package: DISON.........c..uuuiiiiiii e 132
N R = SRR 132
ALLL MAKE L.t a e as 132
ALL2. DESCR ..ttt e e et eane s 132

F N G T = I 1S IO PR UP PP PUPTURTPPRTOPI 132
A.1.4. Checking a package WIKgINt ... 133

A.2. Steps for building, installing, packaging..........cccoooiiiiiiii e 133

viii

230 = W] [o N oo PR PR 136

230 2101 o 7 o 0| =1 SO 136
B.2. PACKAGING GIET..... et 137
C. Directory layout of the PKOSIC FTP SEIVET.........cuiiiiiiiie et 139
C.1.distfiles : The distributed SOUICE 1€S........uvviiiiiiiiici e 139
C.2.misc : MiSCellan@ous thiNgS...........uviiiiiiiiiiiiie e 139
C.3.packages : BiNary PACKAgES.cccoiiiiiiiiiiiiieee e et se e st e e e e e s e s s naenreaee e e e e nnnes 139
C.4.reports : BUIK DUIIA FEPOIS. ...t 140
C.5.current , pkgsrc-20 xx Qy: SOUICE PACKAGES........uvvvriiieeiiei i creeeeee e 140
D. Editing guidelines for the pKgSIC gQUIAE...........uuuiiiiiiiiii e reereee e er e e e e 141
DI Y = 1 = o 1= £ PP UR T PPPRPTP 141
D o o Tot =T [= PP T SPPTRPPP 141

List of Tables

1-1. Platforms supported DY PKOSIC.........uueiiiiiiiee e 2
N I - 1ol o 1T o = T]] [RSP PRRRRT 43
23-1. PLIST handling for GNOME PACKAGES.uetiiiaiiiiiiiiiiiiieee e ee e e e e e 121

Chapter 1.
What is pkgsrc?

1.1. Introduction

There is a lot of software freely available for Unix-basedteys, which is usually available in form of
the source code. Before such software can be used, it nebdsctin gured to the local system,
compiled and installed, and this is exactly what The NetB&bkages Collection (pkgsrc) does. pkgsrc
also has some basic commands to handle binary packagest smtlevery user has to build the
packages for himself, which is a time-costly task.

pkgsrc currently contains several thousand packagesidimg:

« www/apache24 - The Apache web server

- www/firefox - The Firefox web browser

- meta-pkgs/gnome - The GNOME Desktop Environment
« meta-pkgs/kde4 - The K Desktop Environment

... justto name a few.

pkgsrc has built-in support for handling varying dependesisuch as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

1.1.1. Why pkgsrc?

pkgsrc provides the following key features:

- Easy building of software from source as well as the creaimhinstallation of binary packages. The
source and latest patches are retrieved from a master amrmdownload site, checksum veri ed, then
built on your system. Support for binary-only distributgois available for both native platforms and
NetBSD emulated platforms.

- All packages are installed in a consistent directory tneeluding binaries, libraries, man pages and
other documentation.

- Tracking of package dependencies automatically, inclydihen performing updates, to ensure
required packages are installed. The con guration les afisus packages are handled automatically
during updates, so local changes are preserved.

- Like NetBSD, pkgsrc is designed with portability in mind azwhsists of highly portable code. This
allows the greatest speed of development when porting tevgtagform. This portability also ensures
that pkgsrc isonsistent across all platforms

Chapter 1. What is pkgsrc?

- The installation pre X, acceptable software licensesgiinational encryption requirements and
build-time options for a large number of packages are alirsatsimple, central con guration le.

- The entire source (not including the distribution les) igély available under a BSD license, so you
may extend and adapt pkgsrc to your needs. Support for lecklgges and patches is available right
out of the box, so you can con gure it speci cally for your @ranment.

The following principles are basic to pkgsrc:

- “It should only work if it's right.” — That means, if a packag®ntains bugs, it's better to nd them
and to complain about them rather than to just install thé&age and hope that it works. There are
numerous checks in pkgsrc that try to nd such bugs: Statadyasis tools pkgtools/pkglint),
build-time checks (portability of shell scripts), and positallation checks (installed les, references
to shared libraries, script interpreters).

« “If it works, it should work everywhere” — Like NetBSD has beported to many hardware
architectures, pkgsrc has been ported to many operatitgnsgsCare is taken that packages behave

the same on all platforms.

1.1.2. Supported platforms

pkgsrc consists of both a source distribution and a binastyidution for these operating systems. After
retrieving the required source or binaries, you can be ugamding with pkgsrc in just minutes!

pkgsrc was derived from FreeBSD's ports system, and ihjtéggveloped for NetBSD only. Since then,

pkgsrc has grown a lot, and now supports the following ptatfa

Table 1-1. Platforms supported by pkgsrc

Platform Date Support Added Notes

NetBSD Aug 1997

(http://www.NetBSD.org/)

Solaris Mar 1999 README.Solaris

(http://wwws.sun.com/software/solaris/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

Linux (http://www.kernel.org/) Jun 1999 README.Linux
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

Darwin / Mac OS X/0OS X/ Oct 2001 README.MacOSX

macOS (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

(https://developer.apple.com/miacos/)

FreeBSD Nov 2002 README.FreeBSD

(http:/lwww.freebsd.org/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

OpenBSD Nov 2002 README.OpenBSD

(http://www.openbsd.org/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

Chapter 1. What is pkgsrc?

sre/current/pkgsr

sre/current/pkgsr

sre/current/pkgsr

Platform Date Support Added Notes

IRIX Dec 2002 README.IRIX

(http://lwww.sgi.com/software/ir{x/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr
README.IRIX5.3
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

BSD/OS Dec 2003

AIX (http://www- Dec 2003 README.AIX

1.ibm.com/servers/aix/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

Interix Mar 2004 README.Interix

(http://www.microsoft.com/windows/sfu/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

(Microsoft Windows Services fqr

Unix)

DragonFlyBSD Oct 2004

(http://www.dragon ybsd.org/)

OSF/1 (http://www.tru64.org/) Nov 2004 README.OSF1
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

HP-UX Apr 2007 README.HPUX

(http:/lwww.hp.com/products1/unix/) (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

Haiku (http://www.haiku-os.org/) Sep 2010 README.Haiku
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsr

MirBSD Jan 2011

(http://www.mirbsd.org/)

Minix3 (http://www.minix3.org/) Nov 2011 README.Minix3
(http://ftp.NetBSD.org/pub/pkgs

Cygwin (http://cygwin.com/) Mar 2013 README.Cygwin
(http://ftp.NetBSD.org/pub/pkgs

GNU/kFreeBSD Jul 2013 README.GNUKFreeBSD

(http://www.debian.org/ports/kfreebsd- (http://ftp.NetBSD.org/pub/pkgs

gnu/)

Bitrig (http://www.bitrig.org/) Jun 2014 README.Bitrig

(http://ftp.NetBSD.org/pub/pkgs

sre/current/pkgsr

Chapter 1. What is pkgsrc?

1.2. Overview

This document is divided into three parts. The rghe pkgsrc user's guidelescribes how one can use
one of the packages in the Package Collection, either baliimgt a precompiled binary package, or by
building one's own copy using the NetBSD package system.sEgend part,

The pkgsrc developer's guidexplains how to prepare a package so it can be easily budthmr
NetBSD users without knowing about the package's buildiegis. The third part,

The pkgsrc infrastructure internals intended for those who want to understand how pkgsrc is
implemented.

This document is available in various formats: HTML (inderal), PDF (pkgsrc.pdf), PS (pkgsrc.ps),
TXT (pkgsrc.txt).

1.3. Terminology

There has been a lot of talk about “ports”, “packages”, eidas Here is a description of all the
terminology used within this document.

Package

A set of les and building instructions that describe what&cessary to build a certain piece of
software using pkgsrc. Packages are traditionally stonel@tiusr/pkgsrc , but may be stored in
any location, referred to @KGSRCDIR

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSDeogiting system and can be
bootstrapped to run on non-NetBSD operating systems aslie#indles building (compiling),
installing, and removing of packages.

Dist le

This term describes the le or les that are provided by thétenr of the piece of software to
distribute his work. All the changes necessary to build otBS$® are re ected in the
corresponding package. Usually the dist le is in the formaafompressed tar-archive, but other
types are possible, too. Dist les are usually stored belmwpkgsrc/distfiles

Port
This is the term used by FreeBSD and OpenBSD people for whatla package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a dist le and stufféoiyether in a singlegz le so it can

be installed on machines of the same machine architecttineutithe need to recompile. Packages
are usually generated insr/pkgsrc/packages ; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/packages/).

Sometimes, this is referred to by the term “package” tooeeigily in the context of precompiled
packages.

Chapter 1. What is pkgsrc?

Program

The piece of software to be installed which will be consteddirom all the les in the dist le by the
actions de ned in the corresponding package.

1.3.1. Roles involved in pkgsrc

pkgsrc users

The pkgsrc users are people who use the packages providédbycpTypically they are system
administrators. The people using the software that is égié packages (maybe called “end users”)
are not covered by the pkgsrc guide.

There are two kinds of pkgsrc users: Some only want to ingtaHbuilt binary packages. Others
build the pkgsrc packages from source, either for instgliirem directly or for building binary
packages themselves. For pkgsrc ugtad | in The pkgsrc guidshould provide all necessary
documentation.

package maintainers

A package maintainer creates packages as descrili®atinl in The pkgsrc guide

infrastructure developers

These people are involved in all those les that live in thie directory and below. Only these
people should need to read througgrt |1l in The pkgsrc guideghough others might be curious,
too.

1.4. Typography

When giving examples for commands, shell prompts are ussldde if the command should/can be
issued as root, or if “normal” user privileges are suf cievie use at for root's shell prompt, &sfor
users' shell prompt, assuming they use the C-shell or tcdra&rfor bourne shell and derivatives.

|. The pkgsrc user's guide

Chapter 2.
Where to get pkgsrc and how to
keep it up-to-date

Before you download and extract the les, you need to deciden& you want to extract them. When
using pkgsrc as root user, pkgsrc is usually installedsnpkgsrc . You are though free to install the
sources and binary packages wherever you want in your tesysprovided that the pathname does not
contain white-space or other characters that are intexpsgiecially by the shell and some other
programs. A safe bet is to use only letters, digits, undeescand dashes.

2.1. Getting pkgsrc for the rst time

Before you download any pkgsrc les, you should decide whetfou want theurrentbranch or the
stablebranch. The latter is forked on a quarterly basis from thessurranch and only gets modi ed for
security updates. The names of the stable branches ardrbailthe year and the quarter, for example
2018Q3.

The second step is to decilewyou want to download pkgsrc. You can get it as a tar le or via&V
Both ways are described here.

Note that tar archive contains CVS working copy. Thus yousaitch to using CVS at any later time.

2.1.1. As tar archive

The primary download location for all pkgsrc les is httfity.NetBSD.org/pub/pkgsrc/ or
ftp://ftp.NetBSD.org/pub/pkgsrc/ (it points to the samedtion). There are a number of subdirectories
for different purposes, which are described in detaAppendix C

The tar archive for the current branch is in the directanyent and is calleghkgsrc.tar.gz
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrcda). It is autogenerated weekly.

To save download time we provide bzip2- and xz-compressatvars which are published at
pkgsrc.tar.bz2 (http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrchia?) andokgsre.tar.xz
(http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrcxa) respectively.

You can fetch the same les using FTP.

The tar le for the stable branch 2018Q3 is in the directpkgsrc-2018Q3 and is also called
pkgsrc.tar.gz (https://cdn.NetBSD.org/pub/pkgsrc/pkgsrc-2018Q84rk.tar.gz).

To download the latest pkgsrc stable tarball, run:
$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/pkgsrc-2018Q3/pk gsrc.tar.gz

If you prefer, you can also fetch it using "wget", "curl", coyr web browser.

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

Then, extract it with:
$ tar -xzf pkgsrc.tar.gz -C /usr
This will create the directorgkgsrc/ in/usr/ and all the package source will be stored under

Jusr/pkgsrc/

To download pkgsrc-current, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.t ar.gz

2.1.2. Via anonymous CVS

To fetch a speci ¢ pkgsrc stable branch, run:
$ cd /usr && cvs -gq -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsro ot checkout -r pkgsrc-2018Q3 -P pkgsrc

This will create the directorgkgsrc/ inyour/usr/ directory and all the package source will be stored
under/usr/pkgsrc/

To fetch the pkgsrc current branch, run:
$ cd /usr && cvs -gq -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsro ot checkout -P pkgsrc

Refer to the list of available mirrors (http://www.NetBSiPg/mirrors/#anoncvs) to choose a faster CVS
mirror, if needed.

If you get error messages fromsh , you need to set CVS_RSH variable. E.g.:
$ cd /usr && env CVS_RSH=ssh cvs -q -z2 -d anoncvs@anoncvs.Net BSD.org:/cvsroot checkout -P pkgsrc

Refer to documentation on your command shell how to set C\B5#sh permanently. For Bourne
shells, you can set it in youprofile or better globally inetc/profile

set CVS remote shell command
CVS_RSH=ssh
export CVS_RSH

By default, CVS doesn't do things like most people would etpeto do. But there is a way to convince
CVS, by creating a le calledcvsrc in your home directory and saving the following lines to ihig

le will save you lots of headache and some bug reports, sotvemgly recommend it. You can nd an
explanation of this le in the CVS documentation.

recommended CVS configuration file from the pkgsrc guide
cvs -q -z2

checkout -P

update -dP

diff -upN

rdiff -u

release -d

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

2.2. Keeping pkgsrc up-to-date

The preferred way to keep pkgsrc up-to-date is via CVS (whlsh works if you have rstinstalled it
via atar le). It saves bandwidth and hard disk activity, quemed to downloading the tar le again.

2.2.1. Viatar les

Warning

When updating from a tar le, you rst need to completely remo ve the old pkgsrc
directory. Otherwise those les that have been removed from pkgsrc in the mean
time will not be removed on your local disk, resulting in inconsistencies. When
removing the old les, any changes that you have done to the pk gsrc les will be
lost after updating. Therefore updating via CVS is strongly recommended.

Note that by default the dist les and the binary packagesaxed in the pkgsrc tree, so don't forget to
rescue them before updating. You can also con gure pkgsstaie dist les and packages in directories
outside the pkgsrc tree by setting thesSTDIR andPACKAGE%ariables. Se€hapter Sor the details.

To update pkgsrc from a tar le, download the tar le as expkadl above. Then, make sure that you have
not made any changes to the les in the pkgsrc directory. Rentioe pkgsrc directory and extract the
new tar le. Done.

2.2.2. Via CVS

To update pkgsrc via CVS, change to filgsrc directory and run cvs:

$ cd /usripkgsrc && cvs update -dP

If you get error messages fromsh , you need to set CVS_RSH variable as described above. E.g.:

$ cd /usripkgsrc && env CVS_RSH=ssh cvs up -dP

2.2.2.1. Switching between different pkgsrc branches

When updating pkgsrc, the CVS program keeps track of thechrgou selected. But if you, for

whatever reason, want to switch from the stable branch touhrent one, you can do it by adding the
option “-A” after the “update” keyword. To switch from thewant branch back to the stable branch, add
the “-rpkgsrc-2018Q3” option.

2.2.2.2. What happens to my changes when updating?

When you update pkgsrc, the CVS program will only touch thiesethat are registered in the CVS
repository. That means that any packages that you creatgdusrown will stay unmodi ed. If you
change les that are managed by CVS, later updates will tijyénge your changes with those that have
been done by others. See the CVS manual, chapter “updatdéfails.

Chapter 3.
Using pkgsrc on systems other
than NetBSD

3.1. Binary distribution

SeeSection 4.1

3.2. Bootstrapping pkgsrc

pkgsrc can be bootstrapped for use in two different modéslgged and unprivileged one. In
unprivileged mode in contrast to privileged one all progsare installed under one particular user and
cannot utilise privileged operations (packages don'tterepecial users and all special le permissions
like setuid are ignored).

Installing the bootstrap kit from source should be as simagle

env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsr oot checkout -P pkgsrc
cd pkgsrc/bootstrap
./bootstrap

To bootstrap in unprivileged mode pass “--unprivileged§ & bootstrap

By default, in privileged mode pkgsrc ussr/pkg for pre x where programs will be installed in, and
Jusr/pkg/pkgdb for the package database directory where pkgsrc will doterinal bookkeeping,

Ivar is used avarbase where packages install their persistent data. In unpgett mode pkgsrc uses
~Ipkg for pre x, ~/pkg/pkgdb for the package database, atipkg/var for varbase

You can change default layout using command-line argumBuis “./bootstrap --help” to get detalils.

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

Note: It is possible to bootstrap multiple instances of pkgsrc using non-intersecting directories. Use
bmake corresponding to the installation you're working with to build and install packages.

Chapter 4.
Using pkgsrc

Basically, there are two ways of using pkgsrc. The rst is tdyanstall the package tools and to use
binary packages that someone else has prepared. This igkbeifi pkgsrc. The second way is to install
the “src” of pkgsrc, too. Then you are able to build your owsk@ges, and you can still use binary
packages from someone else.

4.1. Using binary packages

On the ftp.NetBSD.org (ftp://ftp.NetBSD.org/) server atgmirrors, there are collections of binary
packages, ready to be installed. These binary packagedkaweuilt using the default settings for the
directories, that is:

- Jusr/pkg for LOCALBASEwWhere most of the les are installed,
« lusr/pkgletc for con guration les,
« /var for VARBASEwhere those les are installed that may change after ilaiah.

If you cannot use these directories for whatever reasonglienlaecause you're not root), you cannot use
these binary packages, but have to build the packages ypwheh is explained irSection 3.2

4.1.1. Finding binary packages

To install binary packages, you rst need to know from whergét them. The rst place where you
should look is on the main pkgsrc FTP server in the directaul/pkgsrc/packages
(ftp://ftp.NetBSD.org/pub/pkgsrc/packages/).

This directory contains binary packages for multiple matis. First, select your operating system.
(Ignore the directories with version numbers attached thdy just exist for legacy reasons.) Then,
select your hardware architecture, and in the third step(Qt version and the “version” of pkgsrc.

In this directory, you often nd a le calletootstrap.tar.gz which contains the package
management tools. If the le is missing, it is likely that yoaperating system already provides those
tools. Download the le and extract it in thledirectory. It will create the directorigasr/pkg
(containing the tools for managing binary packages and dit@béise of installed packages).

4.1.2. Installing binary packages

In the directory from the last section, there is a subdingatalledAll/ , which contains all the binary
packages that are available for the platform, excludingéhttbat may not be distributed via FTP or
CDROM (depending on which medium you are using).

Chapter 4. Using pkgsrc

To install packages directly from an FTP or HTTP server, hefbllowing commands in a
Bourne-compatible shell (be suresoto root rst):

PATH="/usr/pkg/sbin:$PATH"
PKG_PATH="ftp://ftp.NetBSD.org/pub/pkgsrc/packages/ OPSY$ ARCH VERSIONSAII/"
export PATH PKG_PATH

Instead of URLS, you can also use local paths, for exampleufare installing from a set of CDROMs,
DVDs or an NFS-mounted repository. If you want to install keges from multiple sources, you can
separate them by a semicolonAKG_PATH

After these preparations, installing a package is very:easy

pkg_add libreoffice
pkg_add ap24-php71- =

Note that any prerequisite packages needed to run the paakagestion will be installed, too,
assuming they are present where you install from.

Adding packages might install vulnerable packages. Thusshould rurpkg_admin audit regularly,
especially after installing new packages, and verify thatiulnerabilities are acceptable for your
con guration.

After you've installed packages, be sure to hawe/pkg/bin and/usr/pkg/shin in your PATHSO
you can actually start the just installed program.

4.1.3. Deinstalling packages

To deinstall a package, it does not matter whether it wasliestfrom source code or from a binary
package. Thekg_deletecommand does not know it anyway. To delete a package, yowsarun
pkg_deletepackage-name . The package name can be given with or without version nuritiétcards
can also be used to deinstall a set of packages, for examplacs+ . Be sure to include them in quotes,
so that the shell does not expand them beféue delete sees them.

The-r option is very powerful: it removes all the packages thatinegthe package in question and then
removes the package itself. For example:

pkg_delete -r jpeg

will remove jpeg and all the packages that used it; this alapgrading the jpeg package.

4.1.4. Getting information about installed packages

Thepkg_info shows information about installed packages or binary pgekas.

4.1.5. Checking for security vulnerabilities in installed packages

The NetBSD Security-Of cer and Packages Groups maintaistaf known security vulnerabilities to
packages which are (or have been) included in pkgsrc. This kwvailable from the NetBSD FTP site at
ftp://ftp.NetBSD.org/pub/pkgsrc/dist les/vulnerabiés.

Chapter 4. Using pkgsrc

Throughpkg_admin fetch-pkg-vulnerabilities, this list can be downloaded automatically, and a
security audit of all packages installed on a system canpkace.

There are two components to auditing. The rst stelpg_admin fetch-pkg-vulnerabilities, is for
downloading the list of vulnerabilities from the NetBSD F3iie. The second stepkg _admin audit,
checks to see if any of your installed packages are vulner#td package is vulnerable, you will see
output similar to the following:

Package samba-2.0.9 has a local-root-shell vulnerability , see
http://www.samba.org/samba/whatsnew/macroexploit.ht ml

You may wish to have the vulnerabilities (ftp://ftp.NetB®By/pub/pkgsrc/dist les/vulnerabilities) le
downloaded daily so that it remains current. This may be dgnedding an appropriate entry to the root
users crontab(5) entry. For example the entry

Download vulnerabilities file

0 3 » = » Jusr/pkg/sbin/pkg_admin fetch-pkg-vulnerabilities >/d ev/null 2>&1
Audit the installed packages and email results to root
9 3 » » = Jusr/pkg/sbin/pkg_admin audit |mail -s "Installed packag e audit result" \

root >/dev/null 2>&1

will update the vulnerability list every day at 3AM, followdy an audit at 3:09AM. The result of the
audit are then emailed to root. On NetBSD this may be accaimgdi instead by adding the following
line to/etc/daily.conf

fetch_pkg_vulnerabilities=YES

to fetch the vulnerability list from the daily security ot The system is set to audit the packages by
default but can be set explicitly, if desired (not requirdxy) adding the following line to
/etc/security.conf

check_pkg_vulnerabilities=YES

see daily.conf(5) and security.conf(5) for more details.

4.1.6. Finding if newer versions of your installed packages are in pkgsrc

Install pkgtools/lintpkgsrc and runlintpkgsrc with the “-i” argument to check if your packages are
up-to-date, e.g.

% lintpkgsrc -i

Version mismatch: 'tcsh' 6.09.00 vs 6.10.00

You can then usenake updateto update the package on your system and rebuild any depeirden

Chapter 4. Using pkgsrc

4.1.7. Other administrative functions

Thepkg_admin executes various administrative functions on the packgsfes.

4.2. Building packages from source

After obtaining pkgsrc, thekgsrc directory now contains a set of packages, organized inggoaies.
You can browse the online index of packages, ormake readmefrom thepkgsrc directory to build
local README.html les for all packages, viewable with any web browser suclvasv/lynx or
www/firefox

The defaulpre x for installed packages igsr/pkg . If you wish to change this, you should do so by
settingLOCALBASHN mk.conf . You should not try to use multiple differenOCALBASHEIe nitions on
the same system (inside a chroot is an exception).

The rest of this chapter assumes that the package is alnegqdgsrc. If it is not, see
Part 1l in The pkgsrc guidéor instructions how to create your own packages.

4.2.1. Requirements

To build packages from source, you need a working C comilieiNetBSD, you need to install the
“comp” and the “text” distribution sets. If you want to buikil1-related packages, the “xbase” and
“xcomp” distribution sets are required, too.

4.2.2. Fetching dist les

The rst step for building a package is downloading the dis$ (i.e. the unmodi ed source). If they have
not yet been downloaded, pkgsrc will fetch them automdtical

If you have all les that you need in thdistfiles directory, you don't need to connect. If the dist les
are on CD-ROM, you can mount the CD-ROM fdrom and add:

DISTDIR=/cdrom/pkgsrc/distfiles

to yourmk.conf .

By default a list of distribution sites will be randomly imteixed to prevent huge load on servers which
holding popular packages (for example, SourceForge.rrebrs). Thus, every time when you need to
fetch yet another dist le all the mirrors will be tried in ngiiandom) order. You can turn this feature off
by settingMASTER_SORT_RANDOM=(f@ PKG_DEVELOPERt's already disabled).

You can overwrite some of the major distribution sites tootdites that are close to your own. By setting
one or two variables you can modify the order in which the erasites are accessedASTER_SORT
contains a whitespace delimited list of domain suf xeASTER_SORT_REGHEXeven more exible, it
contains a whitespace delimited list of regular expressitirhas higher priority thamASTER_SORT
Have a look apkgsrc/mk/defaults/mk.conf to nd some examples. This may save some of your
bandwidth and time.

You can change these settings either in your shell's enwiennt, or, if you want to keep the settings, by
editing themk.conf le, and adding the de nitions there.

Chapter 4. Using pkgsrc

If a package depends on many other packages (sudletagpkgs/kde4), the build process may
alternate between periods of downloading source, and dimgpio ensure you have all the source
downloaded initially you can run the command:

% make fetch-list | sh

which will output and run a set of shell commands to fetch theassary les into théistfiles
directory. You can also choose to download the les manually

4.2.3. How to build and install

Once the software has downloaded, any patches will be appiien it will be compiled for you. This
may take some time depending on your computer, and how maey packages the software depends
on and their compile time.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

For example, type

% cd misc/figlet
% make

at the shell prompt to build the various components of th&age.

The next stage is to actually install the newly compiled pangonto your system. Do this by entering:

% make install

while you are still in the directory for whatever package ywa installing.

Installing the package on your system may require you to be However, pkgsrc hasjast-in-time-su
feature, which allows you to only become root for the actoatallation step.

That's it, the software should now be installed and setupu$er. You can now enter:

% make clean

to remove the compiled les in the work directory, as you sldott need them any more. If other
packages were also added to your system (dependenciekioyalur program to compile, you can tidy
these up also with the command:

% make clean-depends

Taking the glet utility as an example, we can install it onr@ystem by building as shown in
Appendix B

10

Chapter 4. Using pkgsrc

The program is installed under the default root of the paekdrpe Jusr/pkg . Should this not

conform to your tastes, set th@CALBASE/ariable in your environment, and it will use that value as th
root of your packages tree. So, to uss/local , SetLOCALBASE=/usr/local in your environment.
Please note that you should use a directory which is dedi¢atpackages and not shared with other
programs (i.e., do not try and us®@CALBASE=/usr). Also, you should not try to add any of your own
les or directories (such asrc/ , obj/ , orpkgsrc/) below theLOCALBASHree. This is to prevent
possible con icts between programs and other les insthlig the package system and whatever else
may have been installed there.

Some packages look ink.conf to alter some con guration options at build time. Have a @bk
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Enmireent
variables such asOCALBASEan be set imk.conf to save having to remember to set them each time
you want to use pkgsrc.

Occasionally, people want to “look under the covers” to seatis going on when a package is building
or being installed. This may be for debugging purposes, bobsimple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command wilKG_DEBUG_LEVEL=2hen a huge amount of
information will be displayed. For example,

make patch PKG_DEBUG_LEVEL=2
will show all the commands that are invoked, up to and inclgdhe “patch” stage.

2. If you want to know the value of a certain make(1) de nitjdinen thevARNAMEe nition should be
used, in conjunction with the show-var target. e.g. to sHmwexpansion of the make(1) variable
LOCALBASE

% make show-var VARNAME=LOCALBASE
Jusr/pkg
%

If you want to install a binary package that you've eitheratesl yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a reffibReserver, you can use the "bin-install”
target. This target will install a binary package - if avhila- via pkg_add(1), else doraake package

The list of remote FTP sites searched is kept in the variaiNeKG_SITES, which defaults to
ftp.NetBSD.org. Any ags that should be added to pkg_addét) be put int@BIN_INSTALL_FLAGS.
Seepkgsrc/mk/defaults/mk.conf for more details.

A nal word of warning: If you set up a system that has a nomsird setting fot OCALBASEDbe sure

to set that before any packages are installed, as you casaesewveral directories for the same purpose.
Doing so will result in pkgsrc not being able to properly aetgour installed packages, and fail
miserably. Note also that precompiled binary packagessuelly built with the default OCALBASEf
lusripkg , and that you shouldotinstall any if you use a non-standet@CALBASE

11

Chapter 5.
Con guring pkgsrc

The whole pkgsrc system is con gured in a single le, usualalledmk.conf . In which directory
pkgsrc looks for that le depends on the installation. OnB&D, when you use make(1) from the base
system, itis in the directorfetc/ . In all other cases the default locatiorsi®REFIX}/etc/
depending on where you told the bootstrap program to intalbinary packages.

The format of the con guration le is that of the usual BSDykt Makefile s. The whole pkgsrc
con guration is done by setting variables in this le. Noteat you can de ne all kinds of variables, and
no special error checking (for example for spelling misgkekes place.

5.1. General con guration

The following variables apply to all pkgsrc packages. A ctetelist of the variables that can be
con gured by the user is available ink/defaults/mk.conf , together with some comments that
describe each variable's intent.

« LOCALBASEWhere packages will be installed. The defauluis/pkg . Do not mix binary packages
with differentLOCALBASE!

+ CROSSBASBEWhere “cross” category packages will be installed. Thedkis
${LOCALBASE}/cross

« X11BASE Where X11 is installed on the system. The defaultss/X11R7

- DISTDIR : Where to store the downloaded copies of the original sodisteibutions used for building
pkgsrc packages. The defaul$i®KGSRCDIR}/distfiles

- PKG_DBDIR Where the database about installed packages is storedlefaelt is/usr/pkg/pkgdb
« MASTER_SITE_OVERRIDHf set, override the packageASTER_SITESwith this value.

« MASTER_SITE_BACKUMBackup location(s) for distribution les and patch lesrit found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults is
ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${DIST_SU BDIR} .

- BINPKG_SITES: List of sites carrying binary pkgsel andarch are replaced with OS release (“2.0”,
etc.) and architecture (“mipsel”, etc.).

« ACCEPTABLE_LICENSESList of acceptable licenses. License names are casetigengvhenever
you try to build a package whose license is not in this list) wall get an error message. If the license
condition is simple enough, the error message will inclyzkcsc instructions on how to change this
variable.

12

Chapter 5. Con guring pkgsrc

5.2. Variables affecting the build process

« PACKAGESThe top level directory for the binary packages. The défiaul
${PKGSRCDIR}/packages

« WRKOBJDIRThe top level directory where, if de ned, the separate vigkdirectories will get
created, and symbolically linked to froB{WRKDIR} (see below). This is useful for building packages
on several architectures, th$fPKGSRCDIR} can be NFS-mounted whil§WRKOBJDIR} is local to
every architecture. (It should be noted tR&IGSRCDIRshould not be set by the user — it is an internal
de nition which refers to the root of the pkgsrc tree. It isgsible to have many pkgsrc tree instances.)

- LOCALPATCHEiIrectory for local patches that aren't part of pkgsrc. Seetion 11.3or more
information.

« PKGMAKECONEOcation of themk.conf le used by a package's BSD-style Make le. If this is not
set,MAKECON/ set to/dev/null to avoid picking up settings used by buildsisr/src

5.3. Variables affecting the installation process

« PKGSRC_KEEP_BIN_PKGSRBY default, binary packages of built packages are preséanve
PACKAGER\Il. Setting this variable to "no" prevents this.

Packages have to support installation into a subdirectovyRKDIR This allows a package to be built,
before the actual lesystem is touched. DESTDIR supporstxin two variations:

- Basic DESTDIR support means that the package installatidmpackaging is still run as root.

- Full DESTDIR support can run the complete build, instafiatand packaging as normal user. Root
privileges are only needed to add packages.

With basic DESTDIR supportnake clean needs to be run as root.

Considering thdéoo/bar package, DESTDIR full support can be tested using the faigwommands
$ id

uid=1000(myusername) gid=100(users) groups=100(users) ,0(wheel)

$ mkdir $HOME/packages

$ cd $PKGSRCDIR/foo/bar

Verify DESTDIRfull support, no root privileges should be needed

$ make stage-install

Create a package without root privileges

$ make PACKAGES=$HOME/packages package

For the following command, you must be able to gain root frges using su(1)

13

Chapter 5. Con guring pkgsrc

$ make PACKAGES=$HOME/packages install
Then, as a simple user

$ make clean

5.4. Selecting and con guring the compiler

5.4.1. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This mapwerridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER

This is a list of values specifying the chain of compilersrteake when building packages. Valid
values are:

« ccc: Compag C Compilers (Tru64)

- ccache : compiler cache (chainable)

« clang : Clang C and Objective-C compiler

. distcc : distributed C/C++ (chainable)

- f2c : Fortran 77 to C compiler (chainable)

« icc : Intel C++ Compiler (Linux)

+ ido : SGI IRIS Development Option cc (IRIX 5)

« gcc: GNU C/C++ Compiler

« hp: HP-UX C/aC++ compilers

« mipspro : Silicon Graphics, Inc. MIPSpro (n32/n64)

« mipspro-ucode : Silicon Graphics, Inc. MIPSpro (032)
« sunpro : Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio
« xlc : IBM's XL C/C++ compiler suite

The default is §cc ”. You can useccache and/ordistcc with an appropriatKGSRC_COMPILER
setting, e.g. écache gcc ". This variable should always be terminated with a valuegfoeal
compiler. Note that only one real compiler should be liseed (“sunpro gcc " is not allowed).

GCC_REQD

This speci es the minimum version of GCC to use when buildiagkages. If the system GCC
doesn't satisfy this requirement, then pkgsrc will buildianstall one of the GCC packages to use
instead.

14

Chapter 5. Con guring pkgsrc

PYTHON_DEFAULT_VERSION

Speci es which version of python to use when several optenesavailable.

PKGSRC_FORTRAN

Speci es the fortran compiler to use. The defauly®s, andgfortran is an alternative.

GFORTRAN_VERSION
If PKGSRC_FORTRAN-= gfortran is used, this option speci es which version to use.

5.4.2. Additional ags to the compiler (CFLAGS

If you wish to set theCFLAGSvariable, please make sure to use-theoperator instead of the operator:
CFLAGS+= -your -flags

Using CFLAGS=(i.e. without the “+") may lead to problems with packages tieed to add their own
ags. You may want to take a look at thievel/cpuflags package if you're interested in optimization
speci cally for the current CPU.

5.4.3. Additional ags to the linker (LDFLAGY

If you want to pass ags to the linker, both in the con gureiend the build step, you can do this in two
ways. Either set DFLAGSor LIBS . The difference between the two is thaBS will be appended to the
command line, while DFLAGScome earlierLDFLAGSIs pre-loaded with rpath settings for ELF
machines depending on the settingJ#E_IMAKEor the inclusion ofnk/x11.buildlink3.mk .As

with CFLAGS if you do not wish to override these settings, use#th®perator:

LDFLAGS+= -your -linkerflags

5.5. Developer/advanced settings

« PKG_DEVELOPEMRuUN some sanity checks that package developers want:

- make sure patches apply with zero fuzz

- run check-shlibs to see that all binaries will nd their skdiibs.

- PKG_DEBUG_LEVEIThe level of debugging output which is displayed whilst ingkand installing
the package. The default value for this is 0, which will nesaday the commands as they are executed
(normal, default, quiet operation); the value 1 will digp&l shell commands before their invocation,
and the value 2 will display both the shell commands befoe& thvocation, as well as their actual
execution progress witbet -x

15

Chapter 5. Con guring pkgsrc

5.6. Selecting Build Options

Some packages have build time options, usually to seleatg®set different dependencies, enable
optional support for big dependencies or enable experiahédtures.

To see which options, if any, a package supports, and whithrepare mutually exclusive, rumake
show-options for example:

The following options are supported by this package:
ssl Enable SSL support.
Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.
At most one of the following database options may be selected
mysq|l Enable support for MySQL database.
pgsql Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

The following variables can be de ned imk.conf to select which options to enable for a package:
PKG_DEFAULT_OPTIONSvhich can be used to select or disable options for all paekéwat support
them, andPKG_OPTIONSpkgbase , which can be used to select or disable options speci calty f
packagekgbase . Options listed in these variables are selected, optiossgoled by “-” are disabled. A
few examples:

$ grep "PKG. *OPTION" mk.conf

PKG_DEFAULT_OPTIONS= -arts -dvdread -esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS.apache= suexec

It is important to note that options that were speci callyggested by the package maintainer must be
explicitly removed if you do not wish to include the optiohybu are unsure you can view the current
state withmake show-options

The following settings are consulted in the order given, tiedast setting that selects or disables an
option is used:

1. the default options as suggested by the package maintaine
2. the options implied by the settings of legacy variableg (selow)
3.PKG_DEFAULT_OPTIONS

4. PKG_OPTIONSpkgbase

For groups of mutually exclusive options, the last optidested is used, all others are automatically
disabled. If an option of the group is explicitly disablelte {oreviously selected option, if any, is used. It
is an error if no option from a required group of options ies&td, and building the package will fail.

Before the options framework was introduced, build optimese selected by setting a variable (often
namedJSE_FOQ in mk.conf for each option. To ease transition to the options frameviarkhe user,
these legacy variables are converted to the appropriai@eng®etting PKG_OPTIONSpkgbase)
automatically. A warning is issued to prompt the user to tpaé.conf to use the options framework
directly. Support for the legacy variables will be removedrgually.

16

Chapter 6.
Creating binary packages

6.1. Building a single binary package

Once you have built and installed a package, you can crdateaay packagevhich can be installed on
another system with pkg_add(1). This saves having to bnddsame package on a group of hosts and
wasting CPU time. It also provides a simple means for otleensstall your package, should you
distribute it.

To create a binary package, change into the appropriatetdiyein pkgsrc, and rumake package

$ cd misc/figlet
$ make package

This will build and install your package (if not already dyrend then build a binary package from what
was installed. You can then use thley_* tools to manipulate it. Binary packages are created by dtefau
in /usr/pkgsrc/packages , in the form of a gzipped tar le. SeBection B.Zor a continuation of the
abovemiscf/figlet example.

SeeChapter 2%¥or information on how to submit such a binary package.

6.2. Settings for creation of binary packages
SeeSection 17.17

17

Chapter 7.

Creating binary packages for
everything in pkgsrc (bulk
builds)

For a number of reasons you may want to build binary packageslarge selected set of packages in
pkgsrc or even for all pkgsrc packages. For instance, wharhgwe multiple machines that should run
the same software, it is wasted time if they all build theickzges themselves from source. Or you may
want to build a list of packages you want and check them befepboying onto production system.
There is a way of getting a set of binary packages: The bulkllsystem, or pbulk ("p" stands for
"parallel"). This chapter describes how to set it up.

7.1. Preparations

First of all, you have to decide whether you build all packagea limited set of them. Full bulk builds
usually consume a lot more resources, both space and tierebthilds for some practical sets of
packages. There exists a number of particularly heavy pgeskdnat are not actually interesting to a wide
audience. For a limited bulk builds you need to make a listazfqages you want to build. Note that all
their dependencies will be built, so you don't need to trdmnt manually.

During bulk builds various packages are installed and digliles! in/usr/pkg (or whatevelLOCALBASE
is), so make sure that you don't need any package during titdsbEssentially, you should provide a
fresh system, either a chroot environment or something ma@e restrictive, depending on what the
operating system provides, or dedicate the whole physieahine. As a useful side effect this makes
sure that bulk builds cannot break anything in your systeher& have been numerous cases where
certain packages tried to install les outside thleCALBASEr wanted to edit some les ifetc .

7.2. Running a pbulk-style bulk build

Running a pbulk-style bulk build works roughly as follows:

« First, build the pbulk infrastructure in a fresh pkgsrc libaa.

- Then, build each of the packages from a clean installaticecthry using the infrastructure.

7.2.1. Con guration
To simplify con guration, we provide the helper scripk/pbulk/pbulk.sh

18

Chapter 7. Creating binary packages for everything in pkdbulk builds)

In order to use it, prepare a clear system (real one, chredriogrment, jail, zone, virtual machine).
Con gure network access to fetch distribution les. Creataser with name "pbulk".

Fetch and extract pkgsrc. Use a command like one of these:

(cd Jusr && ftp -0 - http://ftp.NetBSD.org/pub/pkgsrc/cur rent/pkgsrc.tar.gz | tar -zxf-)
(cd /usr && fetch -0 - http://ftp.NetBSD.org/pub/pkgsrc/c urrent/pkgsrc.tar.gz | tar -zxf-)
(cd Jusr && cvs -Q -z3 -d anoncvs@anoncvs.NetBSD.org:/cvsr oot get -P pkgsrc)

Or any other way that ts (e.g., curl, wget).

Deploy and con gure pbulk tools, e.g.:

sh pbulk.sh -n # use native make, no bootstrap kit needed (for use on NetBSD)
sh pbulk.sh -n -c mk.conffrag # native, apply settings from given mk.conf fragment
sh pbulk.sh -nlc mk.conf.frag # native, apply settings, con figure for limited build

Note: mk.conf.frag is a fragment of mk.conf that contains settings you want to apply to packages
you build. For instance,

PKG_DEVELOPER= yes # perform more checks
X11_TYPE= modular # use pkgsrc X11
SKIP_LICENSE_CHECK= yes # accept all licences (useful

when building all packages)

If con gured for limited list, replace the list itusr/pbulk/etc/pbulk.list with your list of
packages, one per line without empty lines or comments: E.g.

www/firefox
mail/thunderbird
misc/libreoffice4

At this point you can also review con guration insr/pbulk/etc and make nal amendments, if
wanted.

Start it:
[usr/pbulk/bin/bulkbuild

After it nishes, you'll have/mnt lled with distribution les, binary packages, and repoysain text
summary ifmnt/bulklog/meta/report.txt

Note: The pbulk.sh script does not cover all possible use cases. While being ready to run, it serves
as a good starting point to understand and build more complex setups. The script is kept small
enough for better understanding.

Note: The pbulk.sh script supports running unprivileged bulk build and helps con guring distributed
bulk builds.

19

Chapter 7. Creating binary packages for everything in pkdbulk builds)

7.3. Requirements of a full bulk build

A complete bulk build requires lots of disk space. Some ofdis& space can be read-only, some other
must be writable. Some can be on remote lesystems (such &) Bifd some should be local. Some can
be temporary lesystems, others must survive a sudden teboo

« 40 GB for the dist les (read-write, remote, temporary)

- 30 GB for the binary packages (read-write, remote, perm@anen
- 1 GB for the pkgsrc tree (read-only, remote, permanent)

- 5 GB forLOCALBASHread-write, local, temporary)

- 10 GB for the log les (read-write, remote, permanent)

- 5 GB for temporary les (read-write, local, temporary)

7.4. Creating a multiple CD-ROM packages collection

After your pkgsrc bulk-build has completed, you may wishtteate a CD-ROM set of the resulting
binary packages to assist in installing packages on othehimes. Thekgtools/cdpack package
provides a simple tool for creating the ISO 9660 imagepack arranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a givekgage on the same CD as that package.

7.4.1. Example of cdpack

Complete documentation for cdpack is found in the cdpaaki@n page. The following short example
assumes that the binary packages are lefisripkgsrc/packages/All and that suf cient disk
space exists ifu2 to hold the ISO 9660 images.

mkdir /u2/images
pkg_add /usr/pkgsrc/packages/All/cdpack
cdpack /usr/ipkgsrc/packages/All /u2/images

If you wish to include a common set of leCOPYRIGHTREADMEetc.) on each CD in the collection,
then you need to create a directory which contains these dep

mkdir /tmp/common

echo "This is a README" > /tmp/common/README
echo "Another file" > /tmp/common/COPYING

mkdir /tmp/common/bin

echo "#!/bin/sh" > /tmp/common/bin/myscript

echo "echo Hello world" >> /tmp/common/bin/myscript
chmod 755 /tmp/common/bin/myscript

HOH OH R H K

Now create the images:
cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/imag es

Each image will contaiREADMECOPYING andbin/myscript in their root directories.

20

Chapter 8.
Directory layout of the installed
les

The les that are installed by pkgsrc are organized in a way ih similar to what you nd in théusr
directory of the base system. But some details are diffefiéis is because pkgsrc initially came from
FreeBSD and had adopted its le system hierarchy. Later & laggely in uenced by NetBSD. But no
matter which operating system you are using pkgsrc with,cauexpect the same layout for pkgsrc.

There are mainly four root directories for pkgsrc, which alteeon gurable in the

bootstrap/bootstrap script. When pkgsrc has been installed as root, the defazdtibns are:
LOCALBASE= Jusr/pkg

PKG_SYSCONFBASE= usr/pkgl/etc

VARBASE= Ivar

PKG_DBDIR= lusr/pkg/pkgdb

In unprivileged mode (when pkgsrc has been installed as ey aser), the default locations are:

LOCALBASE= ${HOME}/pkg
PKG_SYSCONFBASE= ${HOME}/pkg/etc
VARBASE= ${HOME}/pkg/var
PKG_DBDIR= ${HOME}/pkg/pkgdb

What these four directories are for, and what they look lkexplained below.

« LOCALBASEorresponds to theisr - directory in the base system. It is the “main” directory wehtdre
les are installed and contains the well-known subdireigslikebin , include ,lib , share and
shin .

- VARBASEcorresponds tévar in the base system. Some programs (especially games, tetwor
daemons) need write access to it during normal operation.

« PKG_SYSCONFDIRorresponds téetc in the base system. It contains con guration les of the
packages, as well as pkgsratk.conf itself.

8.1. File system layout in ${LOCALBASE}

The following directories exist in a typical pkgsrc inséibn in${LOCALBASE}.

bin

Contains executable programs that are intended to be lgitesstd by the end user.

21

Chapter 8. Directory layout of the installed les

emul

Contains les for the emulation layers of various other aigrg systems, especially for NetBSD.

etc (the usual location o§{PKG_SYSCONFDIR)

Contains the con guration les.

include

Contains headers for the C and C++ programming languages.
info

Contains GNU info les of various packages.
lib

Contains shared and static libraries.

libdata
Contains data les that don't change after installationh@tdata les belong int&{VARBASE}.

libexec
Contains programs that are not intended to be used by ensl sseh as helper programs or
network daemons.

libexec/cgi-bin

Contains programs that are intended to be executed as Gtisdoy a web server.

man (the usual value 0${PKGMANDIRY})
Contains brief documentation in form of manual pages.
shin
Contains programs that are intended to be used only by trer-siger.

share

Contains platform-independent data les that don't chaafier installation.

share/doc

Contains documentation les provided by the packages.

share/examples

Contains example les provided by the packages. Among sthae original con guration les are
saved here and copied $PKG_SYSCONFDIR}during installation.

share/examples/rc.d

Contains the original les for rc.d scripts.

22

Chapter 8. Directory layout of the installed les

var (the usual location a§{VARBASE})

Contains les that may be modi ed after installation.

8.2. File system layout in ${VARBASE}

db/pkg (the usual location of{PKG_DBDIR})

Contains information about the currently installed paasag

games

Contains highscore les.

log
Contains log les.

run

Contains informational les about daemons that are culyaoinning.

23

Chapter 9.
Frequently Asked Questions

This section contains hints, tips & tricks on special thimgpkgsrc that we didn't nd a better place for
in the previous chapters, and it contains items for both pkgsers and developers.

9.1. Are there any mailing lists for pkg-related discussion ?

The following mailing lists may be of interest to pkgsrc wser

« pkgsrc-users (http://www.NetBSD.org/mailinglists/amdhtml#pkgsrc-users): This is a general
purpose list for most issues regarding pkgsrc, regardigsatiorm, e.g. soliciting user help for
pkgsrc con guration, unexpected build failures, usingtigaitar packages, upgrading pkgsrc
installations, questions regarding the pkgsrc releasechis, etc. General announcements or
proposals for changes that impact the pkgsrc user commenitymajor infrastructure changes, new
features, package removals, etc., may also be posted.

« pkgsrc-bulk (http://www.NetBSD.org/mailinglists/indé@tml#pkgsrc-bulk): A list where the results of
pkgsrc bulk builds are sent and discussed.

+ pkgsrc-changes (http://www.NetBSD.org/mailinglistslex. html#pkgsrc-changes): This list is for
those who are interested in getting a commit message foy ebange committed to pkgsrc. Itis also
available in digest form, meaning one daily message contall commit messages for changes to
the package source tree in that 24 hour period.

To subscribe, do:

% echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from hitpail-index.NetBSD.org/.

9.2. Utilities for package management (pkgtools)

The directorypkgsrc/pkgtools contains a number of useful utilities for both users and kpears of
pkgsrc. This section attempts only to make the reader awa@noe of the utilities and when they might
be useful, and not to duplicate the documentation that camteseach package.

Utilities used by pkgsrc (automatically installed when ded):

« pkgtools/x11-links : Symlinks for use by buildlink.

OS tool augmentation (automatically installed when negded

« pkgtools/digest : Calculates various kinds of checksums (including SHA3).

24

Chapter 9. Frequently Asked Questions

« pkgtools/libnbcompat : Compatibility library for pkgsrc tools.
« pkgtools/mtree : Installed on non-BSD systems due to lack of native mtree.
« pkgtools/pkg_install : Up-to-date replacement féwsr/sbin/pkg_install ,or foruse on

operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

« pkgtools/pkg_tarup : Create a binary package from an already-installed packaggd bymake
replaceto save the old package.

« pkgtools/dfdisk : Adds extra functionality to pkgsrc, allowing it to fetchstlles from multiple
locations. It currently supports the following methods:ltiple CD-ROMs and network FTP/HTTP
connections.

- devel/cpuflags : Determine the best compiler ags to optimise code for yaurent CPU and
compiler.

Utilities for keeping track of installed packages, beingaplate, etc:

« pkgtools/pkgin : A package update tool similar to apt(1). Download, instatid upgrade binary
packages easily.

« pkgtools/pkg_chk : Reports on packages whose installed versions do not ntagdhtest pkgsrc
entries.

- pkgtools/pkgdep : Makes dependency graphs of packages, to aid in choosimgtagst for

updating.
- pkgtools/pkgdepgraph : Makes graphs from the output pkgtools/pkgdep (uses graphviz).
« pkgtools/pkglint : The pkglint(1) program checks a pkgsrc entry for errors.
« pkgtools/lintpkgsrc : The lintpkgsrc(1) program does various checks on the cetaplkgsrc
system.
« pkgtools/pkgsurvey : Report what packages you have installed.

Utilities for people maintaining or creating individualgages:

« pkgtools/pkgdiff : Automate making and maintaining patches for a packagéu(lies pkgdiff,
pkgvi, mkpatches, etc.).

« pkgtools/url2pkg : Aids in converting to pkgsrc.

Utilities for people maintaining pkgsrc (or: more obscukg pitilities)

« pkgtools/pkg_comp : Build packages in a chrooted area.

« pkgtools/libkver : Spoof kernel version for chrooted cross builds.

9.3. How to use pkgsrc as non-root

To install packages from source as a non-root user, downikgsrc as described @hapter 2cd into
that directory and run the commaridootstrap/bootstrap --unprivileged.

25

Chapter 9. Frequently Asked Questions

This will install the binary part of pkgsrc te/pkg and put the pkgsrc con guratiomk.conf into
~/pkgl/etc

For more details, se@k/unprivileged.mk

9.4. How to resume transfers when fetching dist les?

By default, resuming transfers in pkgsrc is disabled, but gan enable this feature by adding the option
PKG_RESUME_TRANSFERS=YiE® mk.conf . If, during a fetch step, an incomplete dist le is found,
pkgsrc will try to resume it.

You can also use a different program than the platform defaafram by changing theETCH_USING
variable. You can specify the program by using of ftp, fetebet or curl. Alternatively, fetching can be
disabled by using the value manual. A value of custom disabie system defaults and dependency
tracking for the fetch program. In that case you have to pleVETCH_CMPFETCH_BEFORE_ARGS
FETCH_RESUME_ARGEETCH_OUTPUT_ARGBETCH_AFTER_ARGS

For example, if you want to useget to download, you'll have to use something like:

FETCH_USING= wget

9.5. How can | install/luse modular X.org from pkgsrc?

If you want to use modular X.org from pkgsrc instead of yowsteyn's own X11 fusr/X11R6
fusr/openwin , ...) you will have to add the following line intak.conf :

X11 TYPE=modular

9.6. How to fetch les from behind a rewall

If you are sitting behind a rewall which does not allow ditemnnections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. Thisaa&l using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdalmhtis one of the rewalls, and it uses
port 80 as the proxy port number. So the proxy environmenakibes are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

9.7. How to fetch les from HTTPS sites

Some fetch tools are not prepared to support HTTPS by défaukxample, the one in NetBSD 6.0), or
the one installed by the pkgsrc bootstrap (to avoid an opeegendency that low in the dependency

graph).
Usually you won't notice, because distribution les are mied weekly to “ftp.NetBSD.org”, but that
might not be often enough if you are following pkgsrc-cutrémthat case, S&8ETCH_USINGnN your

26

Chapter 9. Frequently Asked Questions

mk.conf le to “curl” or “wget”, which are both compiled with HTTPS qport by default. Of course,
these tools need to be installed before you can use them #yis w

9.8. How do I tell make fetch to do passive FTP?

This depends on which utility is used to retrieve dist lesof bsd.pkg.mk , FETCH_CMIs assigned
the rst available command from the following list:

» ${LOCALBASEY}/bin/ftp
« [usr/bin/ftp

On a default NetBSD installation, this will esr/bin/ftp , which automatically tries passive
connections rst, and falls back to active connections & server refuses to do passive. For the other
tools, add the following to younk.conf le: PASSIVE_FETCH=1

Having that option present will prevehifsr/bin/ftp from falling back to active transfers.

9.9. How to fetch all dist les at once

You would like to download all the dist les in a single batatoin work or university, where you can't
run amake fetch There is an archive of dist les on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/dist les/), but dovaading the entire directory may not be appropriate.

The answer here is to domaake fetch-listin /usr/pkgsrc ~ or one of its subdirectories, carry the
resulting list to your machine at work/school and use it¢éhéryou don't have a NetBSD-compatible
ftp(1) (like tnftp) at work, don't forget to SeSETCH_CMMIo something that fetches a URL:

At home:

% cd /usr/pkgsrc
% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles > /tmpl/fetch.sh
% scp /tmpl/fetch.sh work:/tmp

At work:
% sh /tmpl/fetch.sh

then tar uptmp/distfiles and take it home.

If you have a machine running NetBSD, and you want toadledist les (even ones that aren't for your
machine architecture), you can do so by using the aboveiomauimake fetch-listapproach, or fetch
the dist les directly by running:

% make mirror-distfiles

If you even decide to ignoneO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get everything by
running:

% make fetch NO_SKIP=yes

27

Chapter 9. Frequently Asked Questions

9.10. What does “Don't know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling thepkgtools/pkg_install package, you get the error from make that it doesn't
know how to makeusr/share/tmac/tmac.andoc ? This indicates that you don't have installed the

“text” set (nroff, ...) from the NetBSD base distribution your machine. It is recommended to do that to
format man pages.

In the case of thekgtools/pkg_install package, you can get away with settii@MAN=YESither
in the environment or imk.conf .

9.11. What does “Could not nd bsd.own.mk” mean?

You didn't install the compiler setomp.tgz , when you installed your NetBSD machine. Please get and
install it, by extracting it ir’ :

cd /
tar --unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that corresgongsur release (determine via
uname -r).

9.12. Using 'sudo’ with pkgsrc

When installing packages as non-root user and using thénjtshe su(1) feature of pkgsrc, it can
become annoying to type in the root password for each redjpamekage installed. To avoid this, the
sudo package can be used, which does password caching awétea time. To use it, install sudo
(either as binary package or frasacurity/sudo) and then put the following into younk.conf ,
somewherafter the de nition of theLOCALBASEvariable:

.if exists(${LOCALBASE}/bin/sudo)
SU_CMD= ${LOCALBASE}/bin/sudo /bin/sh -c
.endif

9.13. How do | change the location of con guration les?

As the system administrator, you can choose where con gurdes are installed. The default settings
make all these les go int&{PREFIX}/etc or some of its subdirectories; this may be suboptimal

depending on your expectations (e.g., a read-only, NF&1#@PREFIX with a need of per-machine
con guration of the provided packages).

In order to change the defaults, you can modify®ies_SYSCONFBASHEriable (inmk.conf) to point
to your preferred con guration directory; some common epéen includdetc or /etc/pkg

Furthermore, you can change this value on a per-packagelnasetting the
PKG_SYSCONFDIR.${PKG_SYSCONFVARariable PKG_SYSCONFVARvalue usually matches the
name of the package you would like to modify, that is, the eotd ofPKGBASE

28

Chapter 9. Frequently Asked Questions

Note that after changing these settings, you must rebuddeinstall any affected packages.

9.14. Automated security checks

Please be aware that there can often be bugs in third-pdtiyese, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In anréffolessen the exposure, the NetBSD
packages team maintains a database of known-exploits kagas which have at one time been
included in pkgsrc. The database can be downloaded autatigtand a security audit of all packages
installed on a system can take place. To do this, refer toalh@fing two tools (installed as part of the
pkgtools/pkg_install package):

1. pkg_admin fetch-pkg-vulnerabilities, an easy way to download a list of the security vulnerabditi
information. This list is kept up to date by the pkgsrc segugam, and is distributed from the
NetBSD ftp server:

ftp://ftp.NetBSD.org/pkgsrc/dist les/pkg-vulneratties

2. pkg_admin audit, an easy way to audit the current machine, checking eachhkraimerability. If
a vulnerable package is installed, it will be shown by outpugtdout, including a description of the
type of vulnerability, and a URL containing more informatio

Use of these tools is strongly recommended! Seetion 4.1.50r instructions on how to automate
checking and reporting.

If this database is installed, pkgsrc builds will use it tofpem a security check before building any
package.

9.15. Why do some packages ignore my CFLAGZ

When you add your own preferences to @rLAGSvariable in yoummk.conf , these ags are passed in
environment variables to th&onfigure scripts and to make(1). Some package authors ignore the
CFLAGSfrom the environment variable by overriding them in thekefile s of their package.

Currently there is no solution to this problem. If you reailyed the package to use y@FLAGSyou
should runmake patchin the package directory and then inspect Brakefile andMakefile.in for
whether they de neCFLAGSexplicitly. Usually you can remove these lines. But be awhat some
“smart” programmers write so bad code that it only works fa $peci c combination o€FLAGSthey
have chosen.

9.16. A package does not build. What shall | do?

1. Make sure that your copy of pkgsrc is consistent. A casedit@urs often is that people only update
pkgsrc in parts, because of performance reasons. Sincegikgme large system, not a collection
of many small systems, there are sometimes changes thaworitywhen the whole pkgsrc tree is
updated.

2. Make sure that you don't have any CVS con icts. Search for<<<<” or “>>>>>>" in all your
pkgsrc les.

29

Chapter 9. Frequently Asked Questions

3. Make sure that you don't have old copies of the packagea&ed. Ruimake clean clean-depends
to verify this.

4. Ifyou are a package developer who wants to invest some,\arle a look aChapter 19

5. Ifthe problem still exists, write a mail to théxgsrc-users ~ mailing list.

9.17. What does “Make le appears to contain unresolved
cvs/rcs/??? merge con icts” mean?

You have modi ed a le from pkgsrc, and someone else has medithat same le afterwards in the
CVS repository. Both changes are in the same region of thesdevhen you updated pkgsrc, ttes
command marked the con icting changes in the le. Becausthefe markers, the le is no longer a
valid Makefile

Have a look at that le, and if you don't need your local chasg@ymore, you can remove that le and
runcvs -q update -dPin that directory to download the current version.

30

Il. The pkgsrc developer's guide

This part of the book deals with creating and modifying pagls It starts with a “HOWTQO”-like guide
on creating a new package. The remaining chapters are rkere fieference manual for pkgsrc.

Chapter 10.
Creating a new pkgsrc package
from scratch

When you nd a package that is not yet in pkgsrc, you most jikedve a URL from where you can
download the source code. Starting with this URL, creatipgekage involves only a few steps.

1. First, install the package>ools/url2pkg andpkgtools/pkglint

2. Then, choose one of the top-level directories as the oatég which you want to place your
package. You can also create a directory of your own (mayleddacal). In that category
directory, create another directory for your package arahgk into it.

3. Run the programrl2pkg, which will ask you for a URL. Enter the URL of the distributide (in
most cases aar.gz le) and watch how the basic ingredients of your package aeated
automatically. The distribution le is extracted autoneatily to Il in some details in thevakefile
that would otherwise have to be done manually.

4. Examine the extracted les to determine the dependemndigsur package. Ideally, this is
mentioned in somBEADMEle, but things may differ. For each of these dependenciask where it
exists in pkgsrc, and if there is a le callexdildlink3.mk in that directory, add a line to your
packagemakefile which includes that le just before the last line. If theildlink3.mk le does
not exist, it must be created rst. Thmildlink3.mk le makes sure that the package's include
les and libraries are provided.

If you just need binaries from a package, addEPENDSIne to the Make le, which speci es the
version of the dependency and where it can be found in pkghis.line should be placed in the
third paragraph. If the dependency is only needed for gidhe package, but not when using it,
useBUILD_DEPENDSnstead ofDEPENDSYour package may then look like this:

]

BUILD_DEPENDS+= libxslt-[0-9] *:../..[textproc/libxslt
DEPENDS+= screen-[0-9] *:../../misc/screen
DEPENDS+= screen>=4.0:../../misc/screen

(-]

.include "../../ category / package /buildlink3.mk"
.include "../../devel/glib2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk"

5. Runpkglint to see what things still need to be done to make your packagead” one. If you
don't know what pkglint's warnings want to tell you, tpkglint --explain or pkglint -e, which
outputs additional explanations.

32

Chapter 10. Creating a new pkgsrc package from scratch

6. In many cases the package is not yet ready to build. You odnnstructions for the most common
cases in the next sectioBection 10.1After you have followed the instructions over there, yon ca
hopefully continue here.

7. Runbmake cleanto clean the working directory from the extracted les. Bies these les, a lot of
cache les and other system information has been saved iwahking directory, which may
become wrong after you edited thakefile

8. Now, runbmaketo build the package. For the various things that can go wiotigjs phase,
consultChapter 19

9. When the package builds ne, the next step is to instalithekage. Rubmake install and hope
that everything works.

10. Up to now, the lePLIST, which contains a list of the les that are installed by thekeage, is
nearly empty. Rutomake print-PLIST >PLIST to generate a probably correct list. Check the le
using your preferred text editor to see if the list of les l@plausible.

11. Runpkglint again to see if the generatedIST contains garbage or not.

12. When you ralmake install, the package has been registered in the database of idstafiebut
with an empty list of les. To x this, runbmake deinstallandbmake install again. Now the
package is registered with the list of les froRLIST .

13. Runbmake packageto create a binary package from the set of installed les.

10.1. Common types of packages

10.1.1. Perl modules

Simple Perl modules are handled automaticallytd2pkg, including dependencies.

10.1.2. Python modules and programs
Python modules and programs packages are easily createfauset of prede ned variables.

If some Python versions are not supported by the softwaréheBYTHON_VERSIONS_INCOMPATIBLE
variable to the Python versions that are not supported, e.g.

PYTHON_VERSIONS_INCOMPATIBLE= 27

If the packaged software is a Python module, include one. @ting/python/egg.mk ,

../..Nlang/python/distutils.mk , Or ../../lang/python/extension.mk

Most Python packages use either “distutils” or easy-sseipptools (“eggs”). if the packaged software
is using setuptools, you only need to include flang/python/egg.mk ". Otherwise, if the
software uses “distutils”, include.../lang/python/distutils.mk ”. so pkgsrc will use this

framework. “distutils” uses a script calledtup.py , if the “distutils” driver is not callecgetup.py , set
thePYSETUPvariable to the name of the script.

33

Chapter 10. Creating a new pkgsrc package from scratch

Either way, the package directory should be called “pyvsafe” andPKGNAMEhould be set to
“${PYPKGPREFIX}-${DISTNAME}", e.g.

DISTNAME= foopymodule-1.2.10
PKGNAME= ${PYPKGPREFIX}-${DISTNAME}

If it is an application, include."/../lang/python/application.mk ".In order to correctly set the
path to the Python interpreter, use REPLACE_PYTHOMariable and set it to the list of les (paths
relative toWRKSRXhat must be corrected. For example:

REPLACE_PYTHON= *.py

Some Python modules have separate distributions for Py2hoand Python-3.x support. In pkgsrc this

is handled by theersioned_dependencies.mk le. Set PYTHON_VERSIONED_DEPENDENCIH®BS
the list of packages that should be depended upon and include
“.I..lang/python/versioned_dependencies.mk ", then the pkgsrc infrastructure will depend

on the appropriate package version. For example:
PYTHON_VERSIONED_DEPENDENCIES=dialog

Look insideversioned_dependencies.mk for a list of supported packages.

10.2. Examples

10.2.1. How the www/nvu package came into pkgsrc

10.2.1.1. The initial package

Looking at the lepkgsrc/doc/TODO , | saw that the “nvu” package has not yet been imported into
pkgsrc. As the description says it has to do with the web, bwowis choice for the category is “www”.

$ mkdir www/nvu
$ cd www/nvu

The web site says that the sources are available as a tao l€esl that URL to theurl2pkg program:
$ url2pkg http://cvs.nvu.com/download/nvu-1.0-sources. tar.bz2

My editor popped up, and | addedP&GNAMiine below theDISTNAMEline, as the package name should
not have the word “sources” in it. | also lled in thdAINTAINER HOMEPAG&ndCOMMEN®EIdS. Then
the packag®akefile looked like that:

$NetBSD $
#

DISTNAME= nvu-1.0-sources

34

Chapter 10. Creating a new pkgsrc package from scratch

PKGNAME= nvu-1.0

CATEGORIES= WWW

MASTER_SITES= http://cvs.nvu.com/download/
EXTRACT_SUFX= .tar.bz2

MAINTAINER= rilig@NetBSD.org
HOMEPAGE= http://cvs.nvu.com/
COMMENT= Web Authoring System

url2pkg-marker (please do not remove this line.)
.include "../../mk/bsd.pkg.mk"

On the rst line of output above, an arti cial space has bedded between NetBSD and $, this is a
workaround to prevent CVS expanding to the lename of thedgui

Then, | quit the editor and watched pkgsrc downloading aelaaurce archive:

url2pkg> Running "make makesum" ...

=> Required installed package digest>=20010302: digest-2 0060826 found

=> Fetching nvu-1.0-sources.tar.bz2

Requesting http://cvs.nvu.com/download/nvu-1.0-sourc es.tar.bz2

100% | * | 28992 KB 150.77 KB/s00:00 ETA

29687976 bytes retrieved in 03:12 (150.77 KB/s)

url2pkg> Running "make extract”" ...

=> Required installed package digest>=20010302: digest-2 0060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2

=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2

work.bacc -> /tmp/roland/pkgsrc/www/nvu/work.bacc

===> |nstalling dependencies for nvu-1.0

===> Overriding tools for nvu-1.0

===> Extracting for nvu-1.0

url2pkg> Adjusting the Makefile.

Remember to correct CATEGORIES, HOMEPAGE, COMMENT, and DESCR when you're done!

Good luck! (See pkgsrc/doc/pkgsrc.txt for some more help :-)

10.2.1.2. Fixing all kinds of problems to make the package wo rk

Now that the package has been extracted, let's see whatkiitsThe package hasREADME.txt , but
that only says something about mozilla, so it's probablyessefor seeing what dependencies this
package has. But since there is a GNU con gure script in trekgge, let's hope that it will complain
about everything it needs.

$ bmake

=> Required installed package digest>=20010302: digest-2 0060826 found
=> Checksum SHA1l OK for nvu-1.0-sources.tar.bz2

=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2

===> Patching for nvu-1.0

===> Creating toolchain wrappers for nvu-1.0

===> Configuring for nvu-1.0

(]

35

Chapter 10. Creating a new pkgsrc package from scratch

configure: error: Perl 5.004 or higher is required.

[-]
WARNING: Please add USE_TOOLS+=perl to the package Makefil e.

]

That worked quite well. So | opened the package Make le in rdiga, and since it already has a
USE_TOOLSine, | just appended “per!” to it. Since the dependenciethefpackage have changed now,
and since a perl wrapper is automatically installed in tle!4” phase, | need to build the package from
scratch.

$ bmake clean
===> Cleaning for nvu-1.0

$ bmake

[-]

+x [tmp/roland/pkgsrc/www/nvu/work.bacc/.tools/bin/mak e is not \
GNU Make. You will not be able to build Mozilla without GNU Mak e.

]

So | added “gmake” to thgSE_TOOLSine and tried again (from scratch).

(-]
checking for GTK - version >= 1.2.0... no
#x Could not run GTK test program, checking why...

[-]
Now to the other dependencies. The rst question is: Whetleds<GTK package hidden in pkgsrc?

$ echo .././ *[gtk *
[many packages ...]

$ echo .././ * [gtk
J.Ix11/gtk

$ echo .././ * [gtk2
J.Ix11/gtk2

$ echo .././ *[/gtk2/bui *
.[..Ix11/gtk2/buildlink3.mk

The rst try was de nitely too broad. The second one had elyaghe result, which is very good. But
there is one pitfall with GNOME packages. Before GNOME 2 hedrbreleased, there were already
many GNOME 1 packages in pkgsrc. To be able to continue tohesetpackages, the GNOME 2
packages were imported as separate packages, and thes nauadly have a “2” appended. So |
checked whether this was the case here, and indeed it was.

Since the GTK2 package hadaildlink3.mk le, adding the dependency is very easy. | just inserted
an.include line before the last line of the packamjekefile , so that it now looks like this:

[..]

.include "../../x11/gtk2/buildlink3.mk"

.include "../../mk/bsd.pkg.mk

After anotheibmake clean && bmake, the answer was:

[-]
checking for gtk-config... /home/roland/pkg/bin/gtk-co nfig

36

Chapter 10. Creating a new pkgsrc package from scratch

checking for GTK - version >= 1.2.0... no
*»x Could not run GTK test program, checking why...

»x The test program failed to compile or link. See the file confi g.log for the
*x exact error that occured. This usually means GTK was incorre ctly installed
+#x or that you have moved GTK since it was installed. In the latte r case, you
»x may want to edit the gtk-config script: /home/roland/pkg/b in/gtk-config

configure: error: Test for GTK failed.

]

In this particular case, the assumption that “every packagiers GNOME 2" had been wrong. The rst
of the lines above told me that this package really wantecte the GNOME 1 version of GTK. If the
package had looked for GTK2, it would have lookedi&g-con g instead ofgtk-con g . So | changed
thex1l/gtk2 tox1l/gtk inthe packag#akefile ,and tried again.

(-]

cc -0 xpidl.o -c -DOSTYPE=\"NetBSD3\" -DOSARCH=\"NetBSD\ "]
In file included from xpidl.c:42:

xpidl.h:53:24: libIDL/IDL.h: No such file or directory

In file included from xpidl.c:42:

xpidl.h:132: error: parse error before "IDL_ns"

]

The package still does not nd all of its dependencies. Nogvdhestion is: Which package provides the
libIDL/IDL.h header le?

$ echo ../I./ * [xidl *

./..Idevellpy-idle ../../wip/idled ../../x11/acidlau nch

$ echo .././ *[DL *

.J..Inet/libIDL

Let's take the one from the second try. So | included.thénet/libIDL/buildlink3.mk le and

tried again. But the error didn't change. After digging thgh some of the code, | concluded that the
build process of the package was broken and couldn't haverawded, but since the Mozilla source tree
is quite large, | didn'twantto xit. So | added the followin the packag#&akefile and tried again:

CPPFLAGS+= -I${BUILDLINK_PREFIX.libIDL}/include/libl DL-2.0
BUILDLINK_TRANSFORM+= [:IDL:IDL-2

The latter line is needed because the package expectsthgylibiDL.so , but onlylibIDL-2.s0 is
available. So | told the compiler wrapper to rewrite that loa ty.

The next problem was related to a recent change of the Fredifijgrface. | looked up in
www/seamonkey which patch les were relevant for this issue and copied thertnepatches
directory. Then | retried, xed the patches so that they agaptleanly and retried again. This time,
everything worked.

10.2.1.3. Installing the package

make CHECK_FILES=no install

$b
-]
$ bmake print-PLIST >PLIST
$ bmake deinstall

37

Chapter 10. Creating a new pkgsrc package from scratch

$ bmake install

38

Chapter 11.
Package components - les,
directories and contents

Whenever you're preparing a package, there are a numbeesfinvolved which are described in the
following sections.

11.1. Makefile

Building, installation and creation of a binary packagealteontrolled by the packageakefile
TheMakefile describes various things about a package, for example frioenento get it, how to
con gure, build, and install it.

A packageMakefile contains several sections that describe the package.

In the rst section there are the following variables, whitould appear exactly in the order given here.
The order and grouping of the variables is mostly historécal has no further meaning.

- DISTNAMEs the basename of the distribution le to be downloaded ftbmpackage's website.

+ PKGNAMIS the name of the package, as used by pkgsrc. You need talpriovii DISTNAME(which is
the default) is not a good name for the package in pkgsBi®TNAMEIs not provided (no distribution
le is required). Usually it is the pkgsrc directory name &thjer with the version number. It must
match the regular expressioji-Za-z0-9][A-Za-z0-9-_.+] =$, that is, it starts with a letter or
digit, and contains only letters, digits, dashes, undees;aots and plus signs.

« CATEGORIESS a list of categories which the package ts in. You can cleoasy of the top-level
directories of pkgsrc for it.

Currently the following values are available foATEGORIESIf more than one is used, they need to
be separated by spaces:

archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysultils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance malil parallel wm
comms fonts math pkgtools WwWw
converters games mbone print x11

« MASTER_SITESDYNAMIC_MASTER_SITEDIST_SUBDIR, EXTRACT_SUPRXANADISTFILES are
discussed in detail iBection 17.5

The second section contains information about separatsiylbaded patches, if any.

39

Chapter 11. Package components - les, directories and eist

« PATCHFILES Name(s) of additional les that contain distribution plaés. There is no default. pkgsrc
will look for them atPATCH_SITES They will automatically be uncompressed before patcHitigg
names end withgz or.Z .

« PATCH_SITES Primary location(s) for distribution patch les (s@&TCHFILESabove) if not found
locally.

« PATCH_DIST_STRIP: an argument to patch(1) that sets the pathname strip cotnedp nd the
correct les to patch. It defaults tegpO.

The third section contains the following variables.

« MAINTAINERIs the email address of the person who feels responsibléifopackage, and who is
most likely to look at problems or questions regarding tliskage which have been reported with
send-pr(1). Other developers may contactNt#@NTAINER before making changes to the package, but
are not required to do so. When packaging a new progranvA@tTAINERto yourself. If you really
can't maintain the package for future updates, set itdkgsrc-users@NetBSD.org ~ >.

« OWNERhould be used instead FAINTAINERwWhen you do not want other developers to update or
change the package without contacting you rst. A packag&éla should contain one of
MAINTAINER or OWNEFRbut not both.

+ HOMEPAGIS a URL where users can nd more information about the paekag
- COMMENIB a one-line description of the package (should not incthégpackage name).

- LICENSE indicates the license(s) applicable for the package Seetion 19.1.3or further detalils.

Other variables that affect the build:

« WRKSRCThe directory where the interesting distribution les bktpackage are found. The default is
${WRKDIR}Y/${DISTNAME} , which works for most packages.

If a package doesn't create a subdirectory for itself (mdstUGoftware does, for instance), but
extracts itself in the current directory, you should W&KSRC=${WRKDIR}

If a package doesn't create a subdirectory with the nant®TNAMEbut some different name, set
WRKSR® point to the proper name B{WRKDIR}, for example
WRKSRC=${WRKDIR}/${DISTNAME}/unix .Seelang/tcl andx11l/tk for other examples.

The name of the working directory created by pkgsrc is takemftheWRKDIR_BASENAMEriable.
By default, its value isvork . If you want to use the same pkgsrc tree for building difféténds of
binary packages, you can change the variable accordinguongeds. Two other variables handle
common cases of settiyRKDIR_BASENAMBdividually. If OBJHOSTNAMEE de ned inmk.conf ,
the rst component of the host's name is attached to the thirgmame. IfOBJMACHINES de ned,
the platform name is attached, which might look likerk.i386 or work.sparc

Please pay attention to the following gotchas:

- Add MANCOMPRESSHDnan pages are installed in compressed form by the packagg@ackages
using BSD-style make les which honor MANZ, thereMANCOMPRESSED _IF_MANZ

40

Chapter 11. Package components - les, directories and eist

- Replacdusr/local with “${PREFIX}" in all les (see patches, below).

. If the package installs any info les, s&ection 19.6.7

11.2. distinfo

Thedistinfo le contains the message digest, or checksum, of each distdeded for the package.
This ensures that the dist les retrieved from the Interraatédnot been corrupted during transfer or
altered by a malign force to introduce a security hole. Tovjgl® maximum security, all dist les are
protected using three different message digest algori{®iisl, RMD160, SHA512), as well as the le
size.

Thedistinfo le also contains the checksums for all the patches founti@patches directory (see
Section 11.3

To regenerate thdistinfo le, use themake distinfo command.

Some packages have different sets of dist les dependingemplatform, for exampl&ng/openjdk7
These are kept in the sardistinfo le and care should be taken when upgrading such a package to
ensure dist le information is not lost.

11.3. patches/ =

Some packages don't work out-of-the box on the various @taté that are supported by pkgsrc. These
packages need to be patched to make them work. The patchafebefound in th@atches/ directory.

In thepatchphase, these patches are applied to the lewRKSRdirectory after extracting them, in
alphabetic order.

11.3.1. Structure of a single patch le

Thepatch- * les should be indiff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can $&8TCH_FUZZ_FACTOR=-FR Furthermore, each patch should
contain only changes for a single le, and no le should beqgbesd by more than one patch le. This
helps to keep future modi cations simple.

Each patch le is structured as follows: In the rst line, tieds the RCS Id of the patch itself. The
second line should be empty for aesthetic reasons. Aftérttiere should be a comment for each change
that the patch does. There are a number of standard cases:

- Patches for commonly known vulnerabilities should menti@vulnerability ID (CAN, CVE).

- Patches that change source code should mention the plafutrather environment (for example, the
compiler) that the patch is needed for.

The patch should be commented so that any developer who khevesde of the application can make
some use of the patch. Special care should be taken for theeapsdevelopers, since we generally want
that they accept our patches, so we have less work in theefutur

41

Chapter 11. Package components - les, directories and eist

11.3.2. Creating patch les

One important thing to mention is to pay attention that no RQ$get stored in the patch les, as these
will cause problems when later checked into the NetBSD C¥8&.tse th@kgdiff command from the
pkgtools/pkgdiff package to avoid these problems.

For even more automation, we recommend usitkgpatchesfrom the same package to make a whole set
of patches. You just have to backup les before you edit theffiidname.orig , .g. withcp -p

lename lename.orig or, easier, by usingkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of gatdtiethe previously existing one with
patchdiff. The les in patches are replaced by new les, so carefully check if you want toetall the
changes.

When you have nished a package, remember to generate tlogsimas for the patch les by using the
make makepatchsumcommand, se8ection 11.2

When adding a patch that corrects a problem in the dist lthgathan e.g. enforcing pkgsrc's view of
where man pages should go), send the patch as a bug repatrtmthtainer. This bene ts non-pkgsrc
users of the package, and usually makes it possible to retheygatch in future version.

The le names of the patch les are usually of the fopratch- path_to_file_ with__underscores.c .
Many packages still use the previous convenfiatth- [a-z]la-z] , but new patches should be of th
form containing the lenamenkpatchesincluded inpkgtools/pkgdiff takes care of the name
automatically.

11.3.3. Sources where the patch les come from

If you want to share patches between multiple packages isrpkg.g. because they use the same
dist les, setPATCHDIRto the path where the patch les can be found, e.g.:

PATCHDIR= ${.CURDIRY}/../xemacs/patches

Patch les that are distributed by the author or other manais can be listed iRATCHFILES.

If it is desired to store any patches that should not be cotathihto pkgsrc, they can be kept outside the
pkgsrc tree in théLOCALPATCHESlirectory. The directory tree there is expected to have dinges
“category/package” structure as pkgsrc, and patches aexted to be stored inside these dirs (also
known assLOCALPATCHES/$PKGPATHFor example, if you want to keep a private patch for
pkgsrc/graphics/png , keep it INSLOCALPATCHES/graphics/png/mypatch . All les in the

named directory are expected to be patch les, trey are applied after pkgsrc patches are applied

11.3.4. Patching guidelines

When xing a portability issue in the code do not use prepssoe magic to check for the current
operating system nor platform. Doing so hurts portabilitpther platforms because the OS-speci ¢
details are not abstracted appropriately.

The general rule to follow is: instead of checking for the @pi@g system the application is being built
on, check for the speci ¢eaturesyou need. For example, instead of assuming that kqueueilalziea
under NetBSD and using the NetBSD__ macro to conditionalize kqueue support, add a check that
detects kqueue itself — yes, this generally involves patgiiiecon gure script. There is absolutely

42

Chapter 11. Package components - les, directories and eist

nothing that prevents some OSes from adopting interfaces éther OSes (e.g. Linux implementing

kqueue), something that the above checks cannot take intwat

Of course, checking for features generally involves morekvem the developer's side, but the resulting

changes are cleaner and there are chances they will work oy otlaer platforms. Not to mention that
there are higher chances of being later integrated into #iastream sources. Remembédoesn't

work unless it is right!

Some typical examples:

Table 11-1. Patching examples

Where

Incorrect

Correct

con gure script

case ${target_os} in

netbsd *) have_kvm=yes ;;

AC_CHECK_LIB(kvm, kvm_open|

#if defined(__NetBSD_)
int fd = kqueue();

... #else

#endif }

*) have_kvm=no
esac
C source le #if defined(__NetBSD_)
include <sys/event.h> #if defined(HAVE_SYS_EVENT_H)
#endif # include <sys/event.h>
#endif
C source le int monitor_file(...) { int monitor_file(...) {

#if defined(HAVE_KQUEUE)
int fd = kqueue();

... #else

#endif }

11.3.5. Feedback to the author

Always, alwaysalwaysfeed back anyortability xes or improvements you do to a package to the
mainstream developers. This is the only way to get theintitie on portability issues and to ensure that
future versions can be built out-of-the box on NetBSD. Femthore, any user that gets newer dist les
will get the xes straight from the packaged code.

have_kvm=yes,

This generally involves cleaning up the patches (becausetimes the patches that are added to pkgsrc
are quick hacks), ling bug reports in the appropriate trxrskfor the projects and working with the
mainstream authors to accept your changes.dkieemely importanthat you do it so that the packages
in pkgsrc are kept simple and thus further changes can bewiitmeut much hassle.

When you have done this, please add a URL to the upstream pag te the patch comment.

Support the idea of free software!

43

Chapter 11. Package components - les, directories and eist

11.4. Other mandatory les

DESCR

A multi-line description of the piece of software. This skibinclude any credits where they are
due. Please bear in mind that others do not share your sehsenaiur (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This le governs the les that are installed on your systerihilze binaries, manual pages, etc.
There are other directives which may be entered in this de;dntrol the creation and deletion of
directories, and the location of inserted les. S&leapter 13or more information.

11.5. Optional les

11.5.1. Files affecting the binary package

INSTALL

This shell script is invoked twice by pkg_add(1). First tiafeer package extraction and before les
are moved in place, the second time after the les to insta&llraoved in place. This can be used to
do any custom procedures not possible with @exec commarrissm . See pkg_add(1) and
pkg_create(1) for more information. See a%ection 15.1Please note that you can modify
variables in it easily by usingILES_SUBST in the package'#akefile

FILES_SUBST+= SOMEVAR="somevalue"

replaces "@SOMEVAR@" with “somevalue” in theSTALL . By default, substitution is performed
for PREFIX, LOCALBASEX11BASE VARBASEand a few others, typmake help
topic=FILES_SUBST for a complete list.

DEINSTALL

This script is executed before and after any les are remoltasl this script's responsibility to
clean up any additional messy details around the packaugalliation, since all pkg_delete knows
is how to delete the les created in the original distributi®ee pkg_delete(1) and pkg_create(1)
for more information. The same methods to replace variatdade used as for theSTALL le.

MESSAGE

This le is displayed after installation of the package. tiddor things like legal notices on
almost-free software and hints for updating con g les aftestalling modules for apache, PHP etc.
Please note that you can modify variables in it easily bygiIiESSAGE_SUBST the package's
Makefile

MESSAGE_SUBST+= SOMEVAR="somevalue"

replaces "${SOMEVAR}" with “somevalue” iIMESSAGEByY default, substitution is performed for
PKGNAMBPKGBASEPREFIX, LOCALBASEX11BASE PKG_SYSCONFDIRROOT_GROURNd
ROOT_USER

44

Chapter 11. Package components - les, directories and eist

You can display a different or additional les by setting tiESSAGE_SRwariable. Its default is
MESSAGHT the le exists.

ALTERNATIVES

This le is used by the alternatives framework. It create®) gures, and destroys generic wrappers
used to run programs with similar interfaces. See pkg_radtares(8) from
pkgtools/pkg_alternatives for more information.

Each line of the le contains two lenames, rst the wrappardthen the alternative provided by
the package. Both paths are relativePREFIX.

11.5.2. Files affecting the build process

Makefile.common

This le contains arbitrary things that could also go intMakefile , but its purpose is to be used
by more than one package. This le should only be used whepalc&ages that will use the le are
known in advance. For other purposes it is often better ttevesi .mk le and give it a good name
that describes what it does.

buildlink3.mk

This le contains the dependency information for the bui#B framework (se€hapter 14

hacks.mk

This le contains workarounds for compiler bugs and similasings. It is included automatically by
the pkgsrc infrastructure, so you don't need an extidude line for it.

options.mk

This le contains the code for the package-speci ¢ optiossdChapter 1$that can be selected by
the user. If a package has only one or two options, it is egaalteptable to put the code directly
into theMakefile

11.5.3. Files affecting nothing at all

README

These les do not take place in the creation of a package amldhe purely informative to the
package developer.

TODO

This le contains things that need to be done to make the pgekaen better.

45

Chapter 11. Package components - les, directories and eist

11.6. work *

When you typamake, the distribution les are unpacked into the directory demtbbyWRKDIR It can be
removed by runningnake clean Besides the sources, this directory is also used to keépugar
timestamp les. The directory getemoved completelygn clean. The default i5{. CURDIR}/work or
${.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINHS set.

11.7. files/ =

If you have any les that you wish to be placed in the packagdergo con guration or building, you

could place these les here and us8{&€P} command in the “pre-con gure” target to achieve this.
Alternatively, you could simply diff the le againgtiev/inull and use the patch mechanism to manage
the creation of this le.

If you want to share les in this way with other packages, $etRILESDIR variable to point to the other
package'siles directory, e.g.:

FILESDIR=${.CURDIRY}/../xemacs/files

46

Chapter 12.
Programming in Makefile s

Pkgsrc consists of manyakefile fragments, each of which forms a well-de ned part of the pkgs
system. Using the make(1) system as a programming langoagebig system like pkgsrc requires
some discipline to keep the code correct and understandable

The basic ingredients fonlakefile programming are variables (which are actually macros) aed s
commands. Among these shell commands may even be more coomgs like awk(1) programs. To
make sure that every shell command runs as intended it iss&geto quote all variables correctly when
they are used.

This chapter describes some patterns, that appear queteioftiakefile s, including the pitfalls that
come along with them.

12.1. Caveats

- When you are creating a le as a target of a rule, always whieedata to a temporary le rstand

nally rename that le. Otherwise there might occur an eriothe middle of generating the le, and
when the user runs make(1) for the second time, the le exristswill not be regenerated properly.
Example:
wrong.

@echo "line 1" > ${ TARGET}

@echo '"line 2" >> ${ TARGET}

@false

correct:
@echo "line 1" > ${ TARGET}.tmp
@echo "line 2" >> ${. TARGET}.tmp
@false
@mv ${.TARGET}Ltmp ${.TARGET}

When you rurmake wrongtwice, the le wrong will exist, although there was an error message in
the rst run. On the other hand, runnimgake correctgives an error message twice, as expected.

You might remember that make(1) sometimes rem@&YaARGET} in case of error, but this only
happens when it is interrupted, for example by pressihdrhis doesothappen when one of the
commands fails (like false(1) above).

12.2. Makefile variables

Makefile variables contain strings that can be processed using geperators “=", “+=", “?=", “:=",
and “1=", which are described in the make(1) man page.

47

Chapter 12. Programming iMakefile s

When a variable's value is parsed fronviakefile , the hash character “#” and the backslash character
“\” are handled specially. If a backslash is followed by a hie®; any whitespace immediately in front of
the backslash, the backslash, the newline, and any whitesgpanediately behind the newline are
replaced with a single space. A backslash character andrardinately following hash character are
replaced with a single hash character. Otherwise, the lmatkis passed as is. In a variable assignment,
any hash character that is not preceded by a backslashatatement that continues up to the end of
the logical line.

The evaluation of variables either happens immediatelgoy. lIt happens immediately when the
variable occurs on the right-hand side of the “:=" or the “yjerator, in aif condition or afor loop.
In the other cases, it is evaluated lazily.

Some of the modi ers split the string into words and then apeon the words, others operate on the
string as a whole. When a string is split into words, it istdi{e in sh(1).

There are several types of variables that should be handfedeatly. Strings and two types of lists.

« Stringscan contain arbitrary characters. Nevertheless, you dhestrict yourself to only using
printable characters. Examples &REFIX andCOMMENT

- Internal listsare lists that are never exported to any shell command. Eleinents are separated by
whitespace. Therefore, the elements themselves canneemavedded whitespace. Any other
characters are allowed. Internal lists can be usefbmoops. Examples areEPEND%Nd
BUILD_DEPENDS

- External listsare lists that may be exported to a shell command. Their glesan contain any
characters, including whitespace. That's why they caneatded infor loops. Examples are
DISTFILES andMASTER_SITES

12.2.1. Naming conventions

- All variable names starting with an underscore are resefiaease by the pkgsrc infrastructure. They
shall not be used by packalyrkefile s.

- In .for loops you should use lowercase variable names for theitaraariables.

« All list variables should have a “plural” name, eRKG_OPTIONSr DISTFILES .

12.3. Code snippets

12.3.1. Adding things to a list

When adding a string that possibly contains whitespace oteguto a list (example 1), it must be quoted
using theQ maodi er.

When adding another list to a list (example 2), it must not beted, since its elements are already

quoted.
STRING= foo * bar ‘date’
LIST= # empty

48

Chapter 12. Programming iMakefile s
ANOTHER_LIST= a=b c=d

LIST+= ${STRING:Q}
LIST+= ${ANOTHER_LIST}

1
2
12.3.2. Echoing a string exactly as-is

Echoing a string containing special characters needsapeaik.

STRING= foo bar < > * ‘date’ $$HOME ' "
EXAMPLE_ENV= string=${STRING:Q} x=multiple\ quoted\ wor ds
all:

echo ${STRING} # 1

echo ${STRING:Q} # 2

printf '%s\n' ${STRING:Q}’ # 3

env ${EXAMPLE_ENV} sh -c 'echo "$$string”; echo "$$x" # 4

Example 1 leads to a syntax error in the shell, as the chaszate just copied.

Example 2 quotes the string so that the shell interpretsiecty. But the echo command may
additionally interpret strings with a leading dash or thosetaining backslashes.

Example 3 can handle arbitrary strings, since printf(1yamierprets the format string, but not the next
argument. The trailing single quotes handle the case wteestting is empty. In that case, the :Q

modi er would result in an empty string too, which would thba skipped by the shell. For printf(1) this
doesn't make a difference, but other programs may care.

In example 4, th&XAMPLE_ENWoes not need to be quoted because the quoting has alreadgdree
when adding elements to the list.

12.3.3. Passing CFLAGSto GNU con gure scripts

When passin@FLAGSor similar variables to a GNU-style con gure script (esglyi those that call
other con gure scripts), it must not have leading or trajliwhitespace, since otherwise the con gure
script gets confused. To trim leading and trailing whitesgaise theM modi er, as in the following
example:

CPPFLAGS= # empty

CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX}\"

CPPFLAGS+= ${MY_CPPFLAGS}

CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:KQ}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS:Q}x # properly trimmed

In this exampleCPPFLAGShas both leading and trailing whitespace becauseth@perator always
adds a space.

49

Chapter 12. Programming iMakefile s

12.3.4. Handling possibly empty variables

When a possibly empty variable is used in a shell programait lead to a syntax error.

EGFILES= # empty

install-examples: ~ # produces a syntax error in the shell

for edfile in ${EGFILES}; do \
echo "Installing $$egdfile”; \
done
The shell only sees the tefitr egfile in ; do , SINCE${EGFILES} is replaced with an empty string

by make(1). To x this syntax error, use one of the snippels\we

EMPTY= # empty

install-examples:

for egdfile in ${EGFILES} ""; do \
[-n "$$edfile”] || continue; \
echo "Installing $$egdfile”; \
done

In this case, an empty string is appended to the iteratidittiprevent the syntax error) and ltered out
later.

EGFILES= # empty

install-examples:
for edfile in ${EGFILES}

echo "Installing ${egdfile}"
.endfor

This variant only works wheRGFILES does not contain lenames with spaces, since.ttre loop
splits on simple whitespace.

To have a shell command test whether a make variable is enggyhe following codes{TEST} -z
${POSSIBLY_EMPTY:Q}"" .

50

Chapter 13.
PLIST issues

ThePLIST le contains a package's “packing list”, i.e. a list of lefat belong to the package (relative
to the${PREFIX} directory it's been installed in) plus some additionalstaénts - see the
pkg_create(1) man page for a full list. This chapter add®ssme issues that need attention when
dealing with thePLIST le (or les, see below!).

13.1. RCS ID
Be sure to add a RCS ID line as the rst thing in a@iyST le you write:

@comment $NetBSD $

An arti cial space has been added between NetBSD and $,gkisnorkaround here to prevent CVS
expanding to the lename of the guide. When adding the RCShibspace should be omitted.

13.2. Semi-automatic PLIST generation

You can use thenake print-PLIST command to output a PLIST that matches any new les since the
package was extracted. Sgection 17.17or more information on this target.

13.3. Tweaking output of make print-PLIST

ThePRINT_PLIST_AWKvariable takes a set of AWK patterns and actions that aretasédr the output
of print-PLIST. You carappendany chunk of AWK scripting you like to it, but be careful witlhugting.

For example, to get all les inside thibdata/foo directory removed from the resulting PLIST:

PRINT_PLIST_AWK+= /NibdataVifoo/ { next; }

13.4. Variable substitution in PLIST

A number of variables are substituted automatically in Ald®/hen a package is installed on a system.
This includes the following variables:

${MACHINE_ARCH} ${MACHINE_GNU_ARCH}

Some packages like emacs and perl embed information abacit awichitecture they were built on
into the pathnames where they install their les. To hantle tase, PLIST will be preprocessed
before actually used, and the symb${MACHINE_ARCH} will be replaced by whatiname -p

51

Chapter 13. PLIST issues

gives. The same is done if the strifgMACHINE_GNU_ARCHis embedded in PLIST somewhere -
use this on packages that have GNU autoconf-created coa sgnipts.

Legacy note: There used to be a symbol “$ARCH that was replaced by the output of uname
-m, but that's no longer supported and has been removed.

${OPSYS}, ${LOWER_OPSYS}${OS_VERSION}

Some packages want to embed the OS name and version into stimse To do this, use these
variables in thePLIST :

« ${OPSYS} - output of ‘uname -3
+ ${LOWER_OPSYS} lowercase common name (eg. “solaris”)

+ ${OS_VERSION} - “uname -r’

For a list of values which are replaced by default, the outfputake help topic=PLIST_SUBSTas
well as searching thgkgsrc/mk directory withgrep for PLIST_SUBST should help.

If you want to change other variables not listed above, youazhl variables and their expansions to this
variable in the following way, similar tMESSAGE_SUBSEBeeSection 11.5

PLIST _SUBST+= SOMEVAR="somevalue"

This replaces all occurrences of “${SOMEVAR}" in tHLIST with “somevalue”.

ThePLIST_VARS variable can be used to simplify the common case of conditipincluding some
PLIST entries. It can be done by addirgiIST_VARS+=foo and setting the correspondiRrgIST.foo
variable toyes if the entry should be included. This will substitutgPLIST.foo} " in the PLIST with

either “" " or “"@comment "”. For example, irMakefile
PLIST_VARS+= foo

.if condition

PLIST.foo= yes

.else

And then inPLIST :

@comment $NetBSD $
bin/bar

man/manl/bar.1
${PLIST.foo}bin/foo
${PLIST.foo}man/manl/foo.1
${PLIST .foo}share/bar/foo.data

An arti cial space has been added between NetBSD and $,df@snvorkaround here to prevent CVS
expanding to the lename of the guide. When adding the RCShibsipace should be ommited.

52

Chapter 13. PLIST issues

13.5. Man page compression

Man pages should be installed in compressed fomaiNZs set (inbsd.own.mk), and uncompressed
otherwise. To handle this in tHLIST le, the suf x “.gz” is appended/removed automatically foran
pages according tdANZandMANCOMPRESSIBRINg set or not, see above for details. This modi cation
of thePLIST le is done on a copy of it, noPLIST itself.

13.6. Changing PLIST source with PLIST_SRC

To use one or more les as source for theIST used in generating the binary package, set the variable
PLIST_SRC to the names of that le(s). The les are later concatenateidg cat(1), and the order of
things is important. The default f®LIST_SRC is ${PKGDIR}/PLIST .

13.7. Platform-speci ¢ and differing PLISTs

Some packages decide to install a different set of les basetthe operating system being used. These
differences can be automatically handled by using theviollg les:

« PLIST.common

+ PLIST.${OPSYS}

« PLIST.${MACHINE_ARCH}

« PLIST.${OPSYS}-${MACHINE_ARCH}

« PLIST.common_end

13.8. Build-speci c PLISTs

Some packages decide to generate hard-to-guess le namag thstallation that are hard to wire down.

In such cases, you can set tRENERATE_PLISTvariable to shell code terminated (with a semicolon)
that will output PLIST entries which will be appended to tHd T

You can nd one example in editors/xemacs:
GENERATE_PLIST+= ${ECHO} bin/${DISTNAME}-'${WRKSRC}/s rc/xemacs -sd".dmp ;

which will append something likbin/xemacs-21.4.23-54e8ea71.dmp to thePLIST .

13.9. Sharing directories between packages

A “shared directory” is a directory where multiple (and uated) packages install les. These
directories were problematic because you had to add speclds in the PLIST to conditionally remove
them, or have some centralized package handle them.

In pkgsrec, it is now easy: Each package should create diiestand install les as needepkg_delete
will remove any directories left empty after uninstallingackage.

53

Chapter 13. PLIST issues

If a package needs an empty directory to work, create thetdineduring installation as usual, and also
add an entry to the PLIST:

@pkgdir path/to/fempty/directory

or take a look aMAKE_DIRSandOWN_DIRS

54

Chapter 14.
Buildlink methodology

Buildlink is a framework in pkgsrc that controls what headand libraries are seen by a package's
con gure and build processes. This is implemented in a twep grrocess:

1. Symlink headers and libraries for dependenciesButt. DLINK_DIR , which by defaultis a
subdirectory ofV\RKDIR

2. Create wrapper scripts that are used in place of the naomapiler tools that translate
-I${LOCALBASE}/include and-L${LOCALBASE}/lib into references tBUILDLINK_DIR . The
wrapper scripts also make native compiler on some operayisigms look like GCC, so that
packages that expect GCC won't require modi cations todbwilith those native compilers.

This normalizes the environment in which a package is baithat the package may be built

consistently despite what other software may be instalféghse note that the normal system header and
library paths, e.glusr/include ,Jusr/lib , etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied sofw

14.1. Converting packages to use buildlink3

The process of converting packages to use the buildlink8dweork (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripte@tsof the actual toolchain. Some packages
are tricky, and the only way to know for sure is the ch@plRKDIR}/.work.log to see if the
wrappers are being invoked.

2. Don't overridePREFIX from within the package Make le, e.g. Java VMs, standalonells, etc.,
because the code to symlink les ing9BUILDLINK_DIR} looks for les relative to “pkg_info -qp
pkgname”.

3. Remember thainly the buildlink3.mk les that you list in a package's Make le are added as
dependencies for that package.

If a dependency on a particular package is required fortitaties and headers, then we replace:
DEPENDS+= foo>=1.1.0:../../category/foo

with

.include "../../category/foo/buildlink3.mk"

The buildlink3.mk les usually de ne the required depende@ss. If you need a newer version of the
dependency when using buildlink3.mk les, then you can deinin your Make le; for example:

55

Chapter 14. Buildlink methodology

BUILDLINK_API_DEPENDS.foo+= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are severabildlink3.mk les in pkgsrc/mk that handle special package issues:

« bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB implentiemtaased on
the values 0BDB_ ACCEPTERNdBDB_DEFAULT

« curses.buildlink3.mk : If the system comes with neither Curses nor NCurses, tHisake care
to install thedevel/ncurses package.

« krb5.buildlink3.mk uses the value ifRB5_ACCEPTEID choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberonfementation.

« motif.buildlink3.mk checks for a system-provided Motif installation or adds paselency on
x11/lesstif orx1l/motif . The user can s&OTIF_TYPEto “dt”, “lesstif” or “motif” to choose
which Motif version will be used.

- readline.buildlink3.mk checks for a system-provided GNU readline or editline dibe
installation, or adds a dependencydavel/readline , devel/editline . The user can set
READLINE_DEFAULTo choose readline implementation. If your package realyds GNU readline
library, its Make le should includelevel/readline/buildlink3.mk instead of
readline.buildlink3.mk

« 0ss.buildlink3.mk de nes several variables that may be used by packages thahepen
Sound System (OSS) API.

+ pgsql.buildlink3.mk will accept any of the Postgres versions in the variable
PGSQL_VERSIONS ACCEPTHEDd default to the versiohGSQL_VERSION_DEFAULTBee the le for
more information.

- pthread.buildlink3.mk uses the value #THREAD_OPTand checks for native pthreads or adds
a dependency odevel/pth as needed.

« xaw.buildlink3.mk uses the value ofAW_TYPEoO choose a particular Athena widgets library.

The comments in thogauildlink3.mk les provide a more complete description of how to use them
properly.

14.2. Writing buildlink3.mk les

A package'suildlink3.mk le is included by Make les to indicate the need to compiledalimk
against header les and libraries provided by the packagauillink3.mk le should always
provide enough information to add the correct type of depany relationship and include any other
buildlink3.mk les that it needs to nd headers and libraries that it needsiirn.

To generate an initidduildlink3.mk le for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, thevialijo
command will generate a good starting pointifaildlink3.mk les:

% cd pkgsrc/ category / pkgdir
% createbuildlink >buildlink3.mk

56

Chapter 14. Buildlink methodology

14.2.1. Anatomy of a buildlink3.mk le
The following real-life exampleéuildlink3.mk is taken frompkgsrc/graphics/tiff
$NetBSD: buildlink3.mk,v 1.16 2009/03/20 19:24:45 joerg Exp $

BUILDLINK_TREE+= tiff

.if !defined(TIFF_BUILDLINK3_MK)
TIFF_BUILDLINK3_MK:=

BUILDLINK_API_DEPENDS. tiff+= tiff>=3.6.1
BUILDLINK_ABI_DEPENDS.tiff+= tiff>=3.7.2nb1
BUILDLINK_PKGSRCDIR.tiff?= ../..Igraphicst/tiff

.include "../../devel/zlib/buildlink3.mk"
.include "../../graphics/jpeg/buildlink3.mKk"
.endif # TIFF_BUILDLINK3_MK

BUILDLINK_TREE+= -tiff

The header and footer manipul&eILDLINK_TREE, which is common across dllildlink3.mk les
and is used to track the dependency tree.

The main section is protected from multiple inclusion andtoals how the dependency pRg is added.
Several important variables are set in the section:

- BUILDLINK_API_DEPENDS. pkg is the actual dependency recorded in the installed packiaige;
should always be set using to ensure that we're appending to any pre-existing list ddies. This
variable should be set to the rst version of the packageltlagtan backwards-incompatible API
change.

« BUILDLINK_PKGSRCDIR.pkg is the location of thepkg pkgsrc directory.

« BUILDLINK_DEPMETHODpkg (not shown above) controls whether we Bs#L.D_DEPENDSOr
DEPENDS$o add the dependency @Rg . The build dependency is selected by setting
BUILDLINK_DEPMETHODpkg to “build”. By default, the full dependency is used.

« BUILDLINK_INCDIRS. pkg andBUILDLINK_LIBDIRS. pkg (not shown above) are lists of
subdirectories o${BUILDLINK_PREFIX. pkg} to add to the header and library search paths. These
default to “include” and “lib” respectively.

+ BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor ags to addre@FLAGS
which are passed on to the con gure and build phases. Thepiibn should be avoided and instead
be handled usinBUILDLINK_INCDIRS. pkg as above.

The following variables are all optionally de ned withinighsecond section (protected against multiple
inclusion) and control which package les are symlinkei$fBUILDLINK_DIR} and how their names
are transformed during the symlinking:

« BUILDLINK_FILES. pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX. pkg} to be symlinked int&{BUILDLINK_DIR} ,e.g.include/ *.h.

57

Chapter 14. Buildlink methodology

« BUILDLINK_FILES_CMD. pkg (not shown above) is a shell pipeline that outputs to stddist af les
relative to${BUILDLINK_PREFIX. pkg}.The resulting les are to be symlinked into
${BUILDLINK_DIR} . By default, this takes theCONTENT®f apkg and lters it through
${BUILDLINK_CONTENTS_FILTER. pkg}.

« BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a Iter command that [te¥SCONTENTS
input into a list of les relative tad{BUILDLINK_PREFIX. pkg} on stdout. By default,
BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of theclude andlib directories in the
packagerCONTENTS

« BUILDLINK_FNAME_TRANSFORMKkg (not shown above) is a list of sed arguments used to transform
the name of the source lename into a destination lenamg,-@ "s|/curses.h|/ncurses.h|g"

This section can additionally include ahyildlink3.mk needed fopkg 's library dependencies.

Including thesebuildlink3.mk les means that the headers and libraries for these depereteare
also symlinked int@{BUILDLINK_DIR} whenever thekg buildlink3.mk le is included.
Dependencies are only added for directly inclbdidlink3.mk les.

When providing auildlink3.mk and including othebuildlink3.mk les in it, please only add
necessary ones, i.e., those whose libraries or headerréeaitomatically exposed when the package is
use.

In particular, if only an executabl®if/foo) is linked against a library, that library does not need to be
propagated in theuildlink3.mk le.

The following steps should help you decide if@ldlink3.mk le needs to be included:

- Look at the installed header les: What headers do they iheRiThe packages providing these les
must be buildlinked.

- Runldd on all installed libraries and look against what other lii@a they link. Some of the packages
providing these probably need to be buildlinked; howewsrniot automatic, since e.g. GTK on some
systems pulls in the X libraries, so they will show up in tti¢ output, while on others (like OS X) it
won't. Idd output can thus only be used as a hint.

14.2.2. Updating BUILDLINK_API_DEPENDS. pkg and
BUILDLINK_ABI_DEPENDS. pkg in buildlink3.mk les

These two variables differ in that one describes source atilvifity (API) and the other binary
compatibility (ABI). The difference is that a change in thPlAreaks compilation of programs while
changes in the ABI stop compiled programs from running.

Changes to thBUILDLINK_API_DEPENDS. pkg variable in abuildlink3.mk le happen very rarely.
One possible reason is that all packages depending on te&dgineed a newer version. In case it is
bumped see the description below.

The most common example of an ABI change is that the majoiorecs a shared library is increased. In
this caseBUILDLINK_ABI_DEPENDS. pkg should be adjusted to require at least the new package
version. Then the packages that depend on this packageh@eBKGREVISIONs increased and, if they
havebuildlink3.mk les, their BUILDLINK_ABI_DEPENDS. pkg adjusted, too. This is needed so

58

Chapter 14. Buildlink methodology
pkgsrc will require the correct package dependency andetthé $or an older one when building the
source.

SeeSection 19.1.50r more information about dependencies on other packaggsding the
BUILDLINK_ABI_DEPENDSandABI_DEPENDSde nitions.

Please take careful consideration before adjusiog DLINK_API_DEPENDS. pkg or
BUILDLINK_ABI_DEPENDS. pkg as we don't want to cause unneeded package deletions anttislbo
many cases, hew versions of packages work just ne with aliégendencies.

Also it is not needed to s&UILDLINK_ABI_DEPENDS. pkg when it is identical to
BUILDLINK_API_DEPENDS. pkg .

14.3. Writing builtin.mk les

Some packages in pkgsrc install headers and libraries diratide with headers and libraries presentin
the base system. Aside fronbaildlink3.mk le, these packages should also includbuitin.mk

le that includes the necessary checks to decide whethagubie built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk le fgskg are:

1. It should seUSE_BUILTIN. pkg to either “yes” or “no” after it is included.

2. It shouldnot override anyUSE_BUILTIN. pkg which is already set before ttailtin.mk leis
included.

3. It should be written to allow multiple inclusion. Thisvueryimportant and takes careful attention to
Makefile coding.

14.3.1. Anatomy of a builtin.mk le

The following is the recommended template for builtin.m&st

.if !defined(IS_BUILTIN.foo)

#
IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no
BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
version can be determined.
#
if lempty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0

endif
.endif # IS _BUILTIN.foo

.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}

59

Chapter 14. Buildlink methodology

if defined(BUILTIN_PKG.foo)
for _depend_ in ${BUILDLINK_API_DEPENDS.foo}
. if lempty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \

${PKG_ADMIN} pmatch '${ depend_} ${BUILTIN_PKG.foo} \
&& ${ECHO} "yes" || ${ECHO} "no"
endif
endfor
endif

.endif # USE_BUILTIN.foo

CHECK_BUILTIN.foo?= no

.if lempty(CHECK_BUILTIN.foo:M[nN][0O])

#

Here we place code that depends on whether USE_BUILTIN.foo is set to
"yes" or "no".

#

.endif # CHECK_BUILTIN.foo

The rst section set$S_BUILTIN. pkg depending on ipkg really exists in the base system. This should
not be a base system software with similar functionalitgkg ; it should only be “yes” if the actual
package is included as part of the base system. This vaitabtdy used internally within the

builtin.mk le.

The second section seB&JILTIN_PKG. pkg to the version opkg in the base system if it exists (if
IS_BUILTIN. pkg is “yes”). This variable is only used internally within theiltin.mk le.

The third section setdSE_BUILTIN. pkg and isrequiredin all builtin.mk les. The code in this
section must make the determination whether the built-itwsoe is adequate to satisfy the
dependencies listed BUILDLINK_API_DEPENDS. pkg . This is typically done by comparing
BUILTIN_PKG. pkg against each of the dependencieBWLDLINK_API_DEPENDS. pkg .
USE_BUILTIN. pkg mustbe set to the correct value by the end of blaétin.mk le. Note that
USE_BUILTIN. pkg may be “yes” even ifS_BUILTIN. pkg is “n0” because we may make the
determination that the built-in version of the softwareiisikar enough to be used as a replacement.

The last section is guarded HECK_BUILTIN. pkg , and includes code that uses the value of
USE_BUILTIN. pkg set in the previous section. This typically includes, eadding additional
dependency restrictions and listing additional les to $ipinto ${BUILDLINK_DIR} (via
BUILDLINK_FILES. pkg).

14.3.2. Global preferences for native or pkgsrc software

When building packages, it's possible to choose whetheetta global preference for using either the
built-in (native) version or the pkgsrc version of softwéwesatisfy a dependency. This is controlled by
settingPREFER_PKGSRandPREFER_NATIVE These variables take values of either “yes”, “no”, or a
list of packagesPREFER_PKGSRtells pkgsrc to use the pkgsrc versions of software, while
PREFER_NATIVEells pkgsrc to use the built-in versions. Preferences aterthined by the most

speci c instance of the package in eitt@REFER_PKGSR@r PREFER_NATIVE If a package is speci ed

in neither or in both variables, thédREFER_PKGSRItas precedence ovBeREFER_NATIVE For

example, to require using pkgsrc versions of software fidnlthe most basic bits on a NetBSD system,
you can set:

60

Chapter 14. Buildlink methodology

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A packagemusthave abuiltin.mk le to be listed inPREFER_NATIVE otherwise it is simply ignored
in that list.

SettingPREFER_NATIVEshould be performed straight after bootstrap BREFER_PKGSR@uring
bootstrap. Switching between settings globally at a lat¢e dan introduce complications with
dependency resolution. This is caused by packages builttivét opposite preference being installed
alongside each other.

.Ibootstrap --prefer-pkgsrc yes

61

Chapter 15.
The pkginstall framework

This chapter describes the framework knowmleginstall ~ , whose key features are:

- Generic installation and manipulation of directories ateb outside the pkgsrc-handled tree,
LOCALBASE

- Automatic handling of con guration les during installath, provided that packages are correctly
designed.

- Generation and installation of system startup scripts.

- Registration of system users and groups.

- Registration of system shells.

- Automatic updating of fonts databases.

The following sections inspect each of the above points taitle

You may be thinking that many of the things described herédcdoe easily done with simple code in the
package's post-installation targ@bét-install). This is incorrect as the code in them is only
executed when building from source. Machines using binackpges could not bene t from it at all (as
the code itself could be unavailable). Therefore, the ordy w achieve any of the items described above
is by means of the installation scripts, which are autora#lfigenerated by pkginstall.

15.1. Files and directories outside the installation pre x

As you already know, thELIST le holds a list of les and directories that belong to a pagea The
names used in it are relative to the installation prepfQREFIX}), which means that it cannot register
les outside this directory (absolute path names are notnadd). Despite this restriction, some packages
need to install les outside this location; e.g., und&VARBASE} or ${PKG_SYSCONFDIR} The only

way to achieve this is to create such les during installatiione by using installation scripts.

The generic installation scripts are shell scripts thataartain arbitrary code. The list of scripts to
execute is taken from th&ISTALL_FILE variable, which defaults ttNSTALL . A similar variable exists
for package removabDEINSTALL_FILE , whose default iDEINSTALL). These scripts can run arbitrary
commands, so they have the potential to create and managanigvhere in the le system.

Using these general installation les is not recommendetiniay be needed in some special cases. One
reason for avoiding them is that the user has to trust thegugrkhat there is no unwanted or simply
erroneous code included in the installation script. Algeyusly there were many similar scripts for

the same functionality, and xing a common error involvedding and changing all of them.

The pkginstall framework offers another, standardized. Wayrovides generic scripts to abstract the
manipulation of such les and directories based on varigBkt in the packagedakefile . The rest of
this section describes these variables.

62

Chapter 15. The pkginstall framework

15.1.1. Directory manipulation

The following variables can be set to request the creatiatirettories anywhere in the le system:

+ MAKE_DIRSandOWN_DIRontain a list of directories that should be created andlshaitempt to be
destroyed by the installation scripts. The difference leetwthe two is that the latter prompts the
administrator to remove any directories that may be leéirafeinstallation (because they were not
empty), while the former does not. Example:

MAKE_DIRS+= ${VARBASE}/foo/private

+ MAKE_DIRS_PERM8ndOWN_DIRS_PERM®Ntain a list of tuples describing which directories
should be created and should attempt to be destroyed bydtadlation scripts. Each tuple holds the
following values, separated by spaces: the directory né@mewner, its group and its numerical mode.
For example:

MAKE_DIRS_PERMS+= ${VARBASE}/foo/private \
${REAL_ROOT USER} ${REAL_ROOT_GROUP} 0700

The difference between the two is exactly the same as thalPERMSounterparts.

15.1.2. File manipulation

Creating non-empty les outside the installation pre x ricky because theLIST forces all les to be
inside it. To overcome this problem, the only solution isxtract the le in the known place (i.e., inside
the installation pre x) and copy it to the appropriate lacatduring installation (done by the installation
scripts generated by pkginstall). We will call the formeg thaster lein the following paragraphs,
which describe the variables that can be used to autonlgtazad consistently handle les outside the
installation pre x:

« CONF_FILESandREQD_FILESare pairs of master and target les. During installationdijrthe
master le is copied to the target one if and only if the latiees not exist. Upon deinstallation, the
target le is removed provided that it was not modi ed by thestallation.

The difference between the two is that the latter promptstheinistrator to remove any les that
may be left after deinstallation (because they were not gmphile the former does not.

« CONF_FILES_PERM&NAREQD_FILES_PERMSontain tuples describing master les as well as their
target locations. For each of them, it also speci es theinewtheir group and their numeric
permissions, in this order. For example:

REQD_FILES PERMS+= ${PREFIX}/share/somefile ${VARBASE }/somefile \
${REAL_ROOT_USER} ${REAL_ROOT_GROUP} 0700

The difference between the two is exactly the same as thalPERMSounterparts.

15.2. Con guration les

Con guration les are special in the sense that they aredhestl in their own speci c directory,
PKG_SYSCONFDIRand need special treatment during installation (most aflwis automated by
pkginstall). The main concept you must bear in mind is thas marked as con guration les are

63

Chapter 15. The pkginstall framework

automatically copied to the right place (somewhere inBikleé_SYSCONFDIRduring installationif and
only if they didn't exist before. Similarly, they will not be remaV# they have local modi cations. This
ensures that administrators never lose any custom chamgesiay have made.

15.2.1. How PKG_SYSCONFDIfs set

As said before, theKG_SYSCONFDIRariable speci es where con guration les shall be insedl. Its
contents are set based upon the following variables:

« PKG_SYSCONFBASEhe con guration's root directory. Defaults t§fPREFIX}/etc although it may
be overridden by the user to point to his preferred locatig.(/etc , /etc/pkg , etc.). Packages
must not use it directly.

+ PKG_SYSCONFSUBDIR subdirectory ofPKG_SYSCONFBASEder which the con guration les for
the package being built shall be installed. The de nitiorila variable only makes sense in the
package'sMakefile (i.e., it is not user-customizable).

As an example, consider the Apache packagey/apache24 , which places its con guration les
under thenttpd/ subdirectory oPKG_SYSCONFBASEhis should be set in the package Make le.

« PKG_SYSCONFVABpeci es the name of the variable that holds this packagm'sguration directory
(if different from PKG_SYSCONFBA$Ht defaults toPKGBASE value, and is always pre xed with
PKG_SYSCONFDIR

+ PKG_SYSCONFDIR.${PKG_SYSCONFVAR}olds the directory where the con guration les for the
package identi ed byPKG_SYSCONFVAsshall be placed.

Based on the above variables, pkginstall determines the\@&PKG_SYSCONFDIRwvhich is theonly
variable that can be used within a package to refer to its goration directory. The algorithm used to
set its value is basically the following:

1. If PKG_SYSCONFDIR.${PKG_SYSCONFVARS set, its value is used.

2. If the previous variable is not de ned bBKG_SYSCONFSUBDIR set in the packageMakefile
the resulting value i${PKG_SYSCONFBASE}/${PKG_SYSCONFSUBDIR}

3. Otherwise, it is set t§{PKG_SYSCONFBASE}

It is worth mentioning thas{PKG_SYSCONFDIR}is automatically added tOWN_DIRSSee
Section 15.1.What this means. This does not apply to subdirectorié$RKG_SYSCONFDIR} they
still have to be created with OWN_DIRS or MAKE_DIRS.

15.2.2. Telling the software where con guration les are

Given that pkgsrc (and users!) expect con guration les tib a known place, you need to teach each
package where it shall install its les. In some cases yoli ldle to patch the package Make les to
achieve it. If you are lucky, though, it may be as easy as pgssi extra ag to the con guration script;
this is the case of GNU Autoconf- generated les:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

64

Chapter 15. The pkginstall framework

Note that this speci es where the package haletk forits con guration les, not where they will be
originally installed (although the difference is never ki unfortunately).

15.2.3. Patching installations

As said before, pkginstall automatically handles con gima les. This means thathe packages
themselves must not touch the contents Gf{PKG_SYSCONFDIR}directly. Bad news is that many
software installation scripts will, out of the box, messhatihe contents of that directory. So what is the
correct procedure to x this issue?

You must teach the package (usually by manually patchirtg it)stall any con guration les under the
examples hierarchghare/examples/${PKGBASE}/ . This way, thePLIST registers them and the
administrator always has the original copies available.

Once the required con guration les are in place (i.e., unttee examples hierarchy), the pkginstall
framework can use them as master copies during the packstgdiation to update what is in
${PKG_SYSCONFDIR} To achieve this, the variabl€ONF_FILESandCONF_FILES_PERMSre used.
Check outSection 15.1.2or information about their syntax and their purpose. Heran example, taken
from themail/mutt package:

EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that theEGDIRvariable is speci c to that package and has no meaning caitsid

15.2.4. Disabling handling of con guration les

The automatic copying of con g les can be toggled by settthg environment variableKG_CONFIG
prior to package installation.

15.3. System startup scripts

System startup scripts are special les because they musshtaled in a place known by the underlying
OS, usually outside the installation pre x. Therefore, Haene rules described Bection 15.Japply, and
the same solutions can be used. However, pkginstall preédpecial mechanism to handle these les.

In order to provide system startup scripts, the packagecas t

1. Store the script insidgFILESDIR} , with the.sh suf x appended. Considering theint/cups
package as an example, it hasuasd.sh inits les directory.

2. Tell pkginstall to handle it, appending the name of th@s$cwithout its extension, to the
RCD_SCRIPTSvariable. Continuing the previous example:

RCD_SCRIPTS+= cupsd

Once this is done, pkginstall will do the following steps &ach script in an automated fashion:

65

Chapter 15. The pkginstall framework

1. Process the le found in the les directory applying alktlsubstitutions described in the
FILES_SUBST variable.

2. Copy the script from the les directory to the examplesraiehy,
${PREFIX}/share/examples/rc.d/ . Note that this master le must be explicitly registered in
thePLIST .

3. Add code to the installation scripts to copy the startupsérom the examples hierarchy into the
system-wide startup scripts directory.

15.3.1. Disabling handling of system startup scripts

The automatic copying of con g les can be toggled by settthg environment variable
PKG_RCD_SCRIPT®rior to package installation. Note that the scripts willaheays copied inside the
examples hierarchg{PREFIX}/share/examples/rc.d/ , o matter what the value of this variable is.

15.4. System users and groups

If a package needs to create special users and/or groupsgydustallation, it can do so by using the
pkginstall framework.

Users can be created by adding entries toPk6_USER%ariable. Each entry has the following syntax:
user:group

Further speci cation of user details may be done by settieigyser variable®KG_UID.user is the
numeric UID for the usePKG_GECOSiser is the user's description or commeRKG_HOMEiser S
the user's home directory, and defaultgrionexistent if not speci ed.PKG_SHELLuser is the
user's shell, and defaults tebin/nologin if not speci ed.

Similarly, groups can be created by adding entries tcPh®_GROUP@ariable, whose syntax is:
group

The numeric GID of the group may be set by de niRg§G_GID.group .

If a package needs to create the users and groups at an statjer then it can SASERGROUP_PHASE

to eitherconfigure ,build , or pre-install to indicate the phase before which the users and groups
are created. In this case, the numeric UIDs and GIDs of thet@dausers and groups are automatically
hardcoded into the nal installation scripts.

15.5. System shells

Packages that install system shells should register théheishell databasgstc/shells , to make
things easier to the administrator. This must be done franirtstallation scripts to keep binary packages
working on any system. pkginstall provides an easy way toqish this task.

When a package provides a shell interpreter, it has to s&tKlke SHELLvariable to its absolute le
name. This will add some hooks to the installation scriptsandle it. Consider the following example,
taken fromshells/zsh

66

Chapter 15. The pkginstall framework

PKG_SHELL= ${PREFIX}/bin/zsh

15.5.1. Disabling shell registration

The automatic registration of shell interpreters can beldéd by the administrator by setting the
PKG_REGISTER_SHELL®&nvironment variable tblQ

15.6. Fonts

Packages that install X11 fonts should update the databasé¢hat index the fonts within each fonts
directory. This can easily be accomplished within the pkgt framework.

When a package installs X11 fonts, it must list the diree®in which fonts are installed in the
FONTS_DIRS.type Vvariables, whergype can be one of “ttf”, “typel” or “x11”. This will add hooks to
the installation scripts to run the appropriate commandspttate the fonts database les within each of
those directories. For convenience, if the directory patielative, it is taken to be relative to the
package's installation pre x. Consider the following expl®, taken fronfonts/dbz-ttf

FONTS_DIRS.ttf= ${PREFIX}/share/fonts/X11/TTF

15.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disable@ laglthinistrator by setting the
PKG_UPDATE_FONTS_D®wironment variable tblQ

67

Chapter 16.
Options handling

Many packages have the ability to be built to support difi¢sets of featuressd.options.mk isa
framework in pkgsrc that provides generic handling of thosions that determine different ways in
which the packages can be built. It's possible for the ussptxify exactly which sets of options will be
built into a package or to allow a set of global default opsi@pply.

There are two broad classes of behaviors that one might waniritrol via options. One is whether
some particular feature is enabled in a program that willdik &Bnyway, often by including or not
including a dependency on some other package. The otherighetor not an additional program will
be built as part of the package. Generally, it is better toeragplit package for such additional
programs instead of using options, because it enablesybieakages to be built which can then be
added separately. For example, the foo package might havealidependencies (those packages
without which foo doesn't make sense), and then the foo-g#tkage might include the GTK frontend
program gfoo. This is better than including a gtk option to fbat adds gfoo, because either that option
is default, in which case binary users can't get foo withdabgor not default, in which case they can't
get gfoo. With split packages, they can install foo withoating GTK, and later decide to install gfoo
(pulling in GTK at that time). This is an advantage to soursers too, avoiding the need for rebuilds.

Plugins with widely varying dependencies should usuallglé instead of options.

It is often more work to maintain split packages, especiéllige upstream package does not support
this. The decision of split vs. option should be made baseati®tikelihood that users will want or
object to the various pieces, the size of the dependenaeaté included, and the amount of work.

A further consideration is licensing. Non-free parts, oitgpéhat depend on non-free dependencies
(especially plugins) should almost always be split if fosesi

16.1. Global default options

Global default options are listed PKG_DEFAULT_OPTIONSvhich is a list of the options that should be
built into every package if that option is supported. Thigatale should be set imk.conf .

16.2. Converting packages to use bsd.options.mk

The following example shows holsd.options.mk should be used by the hypothetical “wibble”
package, either in the packaigjekefile ,orina le, e.g.options.mk , thatis included by the main
packagemakefile

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo Idap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql

68

Chapter 16. Options handling

PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP:Idap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \

"Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG
.endif

.include "../../mk/bsd.options.mk"

Package-specific option-handling

_OPTIONS_VAR} instead."

L
FOO support
L
.if lempty(PKG_OPTIONS:Mwibble-foo)
CONFIGURE_ARGS+= --enable-foo
.endif
Lk
LDAP support
Lk
.if lempty(PKG_OPTIONS:Mldap)
include "../../databases/openldap-client/buildlink3 .mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.op enldap-client}
.endif
Hittt
database support
Hittt

.if lempty(PKG_OPTIONS:Mmysq]l)
include "../../mk/mysql.buildlink3.mk"

.endif

.if lempty(PKG_OPTIONS:Mpgsql)
include "../../mk/pgsql.buildlink3.mk"

.endif

The rst section contains the information about which bualations are supported by the package, and

any default options settings if needed.

1. PKG_OPTIONS_VARS the name of the make(1) variable that the user can set ide¢he default

options. It should be set to PKG_OPTIOIg&gbase . Do not set it to

PKG_OPTIONS.${PKGBASE}, sincBKGBASES not de ned at the point where the options are

processed.

2.PKG_SUPPORTED_OPTIONsSa list of build options supported by the package.

69

Chapter 16. Options handling

3.PKG_OPTIONS_OPTIONAL_GROURSa list of names of groups of mutually exclusive optionse Th
options in each group are listedMKG_OPTIONS_GROUBroupname . The most speci ¢ setting of
any option from the group takes precedence over all othéommpin the group. Options from the
groups will be automatically added RKG_SUPPORTED_OPTIONS

4.PKG_OPTIONS_REQUIRED_GROUIBdike PKG_OPTIONS_OPTIONAL_GROURSIt building the
packages will fail if no option from the group is selected.

5.PKG_OPTIONS_NONEMPTY_SEiB= list of names of sets of options. At least one option fraiche
set must be selected. The options in each set are listelddn OPTIONS_SETsetname . Options
from the sets will be automatically addedR&G_SUPPORTED_OPTIONBuilding the package will
fail if no option from the set is selected.

6. PKG_SUGGESTED_OPTIONsa list of build options which are enabled by default.

7.PKG_OPTIONS_LEGACY_VARSa list of “USE_VARIABLEoption " pairs that map legacy
mk.conf variables to their option counterparts. Pairs should bedddth “+="to keep the listing
of global legacy variables. A warning will be issued if theuases a legacy variable.

8.PKG_OPTIONS_LEGACY_OPTSa list of “old-option :new-option " pairs that map options that
have been renamed to their new counterparts. Pairs shoalddssl with “+="to keep the listing of
global legacy options. A warning will be issued if the usessia legacy option.

9. PKG_LEGACY_OPTIONS a list of options implied by deprecated variables useds Tan be used
for cases that neith@KG_OPTIONS_LEGACY_VAR®rPKG_OPTIONS LEGACY_OPT&nN handle,
e. g. wherPKG_OPTIONS_VARs renamed.

10.PKG_OPTIONS_DEPRECATED_WARNINSS list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modiBKG_DEFAULT_OPTIONSY the variable named iRKG_OPTIONS_VAR
These are strictly user-settable. To suggest a defaulf s@tions, usePKG_SUGGESTED_OPTIONS

PKG_OPTIONS_VARust be de ned before includingsd.options.mk . If none of
PKG_SUPPORTED_OPTIONSKG_OPTIONS_OPTIONAL_GROUFRshd
PKG_OPTIONS_REQUIRED_GROU®&® de ned (as can happen with platform-speci ¢ optionsahe of
them is supported on the current platforiPkG_OPTIONSSs set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion obsd.options.mk , the variablePKG_OPTIONS ontains the list of selected build
options, properly Itered to remove unsupported and dwgikooptions.

The remaining sections contain the logic that is speci cdoleoption. The correct way to check for an
option is to check whether it is listed PKG_OPTIONS

.if lempty(PKG_OPTIONS:M option)

16.3. Option Names

Options that enable similar features in different packdlijes optional support for a library) should use
a common name in all packages that support it (like the nantteedfbrary). If another package already
has an option with the same meaning, use the same name.

70

Chapter 16. Options handling

Options that enable features speci ¢ to one package, wiisnenlikely that another (unrelated) package
has the same (or a similar) optional feature, should use & paenxed with pkgname- .

If a group of related packages share an optional feature spec¢hat group, pre x it with the name of
the “main” package (e. gljoware-errno-hack).

For new options, add a line tok/defaults/options.description . Lines have two elds,

separated by tab. The rst eld is the option name, the sedtsdescription. The description should be a
whole sentence (starting with an uppercase letter and gdth a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The le istegrby option names.

16.4. Determining the options of dependencies

When writingbuildlink3.mk les, it is often necessary to list different dependenciasdd on the

options with which the package was built. For querying thas#ons, the le
pkgsrc/mk/pkg-build-options.mk should be used. A typical example looks like this:

pkgbase := libpurple
.include "../../mk/pkg-build-options.mk"

.if lempty(PKG_BUILD_OPTIONS.libpurple:Mdbus)
.endif

Includingpkg-build-options.mk here will set the variableKG_BUILD_OPTIONS.libpurple to
the build options of the libpurple package, which can theqgueried likePKG_OPTIONSN the
options.mk le. See the le pkg-build-options.mk for more details.

71

Chapter 17.
The build process

17.1. Introduction

This chapter gives a detailed description on how a packagsilis Building a package is separated into
differentphasegfor examplefetch , build , install), all of which are described in the following
sections. Each phase is split into so-cabétaeswhich take the name of the containing phase, pre xed
by one ofpre- , do- orpost- . (Examples arere-configure , post-build) Most of the actual work
is done in thedo- » stages.

Never override the regular targets (likech), if you have to, override theo- *+ ones instead.

The basic steps for building a program are always the sanmst.thé program's sourcaist le) must be
brought to the local system and then extracted. After angkgpeci ¢ patches to compile properly are
applied, the software can be con gured, then built (usubjhcompiling), and nally the generated
binaries, etc. can be put into place on the system.

To get more details about what is happening at each step,aosat theKG_VERBOSEariable, or the
PATCH_DEBU@ariable if you are just interested in more details aboupidehstep.

17.2. Program location

Before outlining the process performed by the NetBSD paelsygtem in the next section, here's a brief
discussion on where programs are installed, and whichbhlasan uence this.

The automatic variableREFIX indicates where all les of the nal program shall be instll It is
usually set ta. OCALBASH/usr/pkg), or CROSSBASIKor pkgs in thecross category. The value of
PREFIX needs to be put into the various places in the program's souhere paths to these les are
encoded. Se8ection 11.3andSection 19.3.Tor more details.

When choosing which of these variables to use, follow thie¥ahg rules:

- PREFIX always points to the location where the current pkg will ketatled. When referring to a
pkg's own installation path, use “${PREFIX}".

« LOCALBASHSs where all non-X11 pkgs are installed. If you need to cartdta -1 or -L argument to the
compilerto nd includes and libraries installed by anothen-X11 pkg, use “${LOCALBASE}".
The nama. OCALBASEstems from FreeBSD, which installed all packagesiéwlocal . As pkgsrc
leavedust/local for the system administrator, this variable is a misnomer.

« X11BASEis where the actual X11 distribution (from xsrc, etc.) igatled. When looking fostandard
X11 includes (not those installed by a package), use “${XA%B}".

- X1l1-based packages using imake mustssf IMAKEto be installed correctly undeOCALBASE

72

Chapter 17. The build process

« Within ${PREFIX} , packages should install les according to hier(7), witk #xception that manual
pages go int&{PREFIX}/man , not${PREFIX}/share/man

17.3. Directories used during the build process

When building a package, various directories are used te stmurce les, temporary les,
pkgsrc-internal les, and so on. These directories arearpd here.

Some of the directory variables contain relative pathnaffiesre are two common base directories for
these relative directorieBKGSRCDIR/PKGPATI used for directories that are pkgsrc-speci¥RKSRC
is used for directories inside the package itself.

PKGSRCDIR
This is an absolute pathname that points to the pkgsrc roettdiry. Generally, you don't need it.

PKGDIR

This is an absolute pathname that points to the current gacka

PKGPATH

This is a pathname relative RKGSRCDIRhat points to the current package.

WRKDIR

This is an absolute pathname pointing to the directory whitrgork takes place. The dist les are
extracted to this directory. It also contains temporargctiories and log les used by the various
pkgsrc frameworks, likbuildlink or thewrappers

WRKSRC

This is an absolute pathname pointing to the directory whezelist les are extracted. It is usually
a direct subdirectory oiVRKDIR and often it's the only directory entry that isn't hidderhi$
variable may be changed by a packaggkefile

The CREATE_WRKDIR_SYMLIN#e nition takes either the valugesor no and defaults tmo. It indicates
whether a symbolic link to th&/RKDIRS to be created in the pkgsrc entry's directory. If users Mdike
to have their pkgsrc trees behave in a read-only manneriieevalue ofCREATE_WRKDIR_SYMLINK
should be set too.

17.4. Running a phase

You can run a particular phase by typintake phase wherephases the name of the phase. This will
automatically run all phases that are required for this ph@ike default phase ksiild , that is, when
you runmake without parameters in a package directory, the packagéwibiuilt, but not installed.

73

Chapter 17. The build process

17.5. The fetch phase

The rst step in building a package is to fetch the distribatiles (dist les) from the sites that are
providing them. This is the task of tHetchphase.

17.5.1. What to fetch and where to get it from

In simple caseMASTER_SITESde nes all URLs from where the dist le, whose name is derifezim
theDISTNAMEvariable, is fetched. The more complicated cases are testielow.

The variableDISTFILES speci es the list of dist les that have to be fetched. ltswaldefaults to
${DEFAULT_DISTFILES} and its value i${DISTNAME}${EXTRACT_SUFX}, so that most packages
don't need to de ne it at allEXTRACT_SUFXs .tar.gz by default, but can be changed freely. Note that
if your package requires additional dist les to the defaule, you cannot just append the additional
lenames using the-= operator, but you have write for example:

DISTFILES= ${DEFAULT_DISTFILES} additional-files.tar. gz

Each dist le is fetched from a list of sites, usuaMASTER_SITES If the package has multiple
DISTFILES or multiplePATCHFILESfrom different sites, you can SSITES. distfile to the list of
URLs where the ledistfile (including the suf x) can be found.

DISTFILES= ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES.foo-file.tar.gz= \
http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/

When actually fetching the dist les, each item frawASTER_SITESor SITES. * gets the name of each
dist le appended to it, without an intermediate slash. Hiere, all site values have to end with a slash or
other separator character. This allows for example tM#&TER_SITESt0 a URL of a CGI script that
gets the name of the dist le as a parameter. In this case,ghgtin would look like:

MASTER_SITES= http://www.example.com/download.cgi?fi le=

The exception to this rule are URLSs starting with a dash. &t ttase the URL is taken as is, fetched and
the result stored under the name of the dist le. You can ussestiyle for the case when the download
URL style does not match the above common case. For exarhprnnanent download URL is a
redirector to the real download URL, or the download le naimeffered by an HTTP
Content-Disposition header. In the following exampte;1.0.0.tar.gz will be created instead of
the defaultv1.0.0.tar.gz

DISTNAME= foo-1.0.0
MASTER_SITES= -http://www.example.com/archive/v1.0.0 .tar.gz

There are some prede ned values féASTER_SITES which can be used in packages. The names of the
variables should speak for themselves.

${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}
${MASTER_SITE_DEBIAN}

74

Chapter 17. The build process

${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GENTOO}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_HASKELL_HACKAGE}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_KDE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_MOZILLA_ALL}
${MASTER_SITE_MOZILLA_ESR}
${MASTER_SITE_MYSQL}
${MASTER_SITE_NETLIB}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_OSDN}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_PGSQL}
${MASTER_SITE_RUBYGEMS}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}
${MASTER_SITE_XORG}

Some explanations for the less self-explaining oOMSSSTER_SITE_BACKURONtains backup sites for
packages that are maintained in ftp://ftp.NetBSD.org/plagsrc/dist les/${DIST_SUBDIR}.
MASTER_SITE_LOCAIcontains local package source distributions that are miaied in
ftp://ftp.NetBSD.org/pub/pkgsrc/dist les/LOCAL_POFST.

If you choose one of these prede ned sites, you may want toipe subdirectory of that site. Since
these macros may expand to more than one actual siteanystuse the following construct to specify a
subdirectory:

MASTER_SITES= ${MASTER_SITE_GNU:=subdirectory/name/}
MASTER_SITES= ${MASTER_SITE_SOURCEFORGE:=project_nane/}

Note the trailing slash after the subdirectory name.

17.5.2. How are the les fetched?

Thefetchphase makes sure that all the dist les exist in a local dogc(DISTDIR , which can be set by
the pkgsrc user). If the les do not exist, they are fetcheidgisommands of the form

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FET CH_AFTER_ARGS}

where${site} varies through several possibilities in turn: rMMASTER_SITE_OVERRIDES tried, then
the sites speci ed in eithe3ITES.file if de ned, elseMASTER_SITESor PATCH_SITES as applies,
then nally the value ofMASTER_SITE_BACKUPThe order of all except the rst and the last can be

75

Chapter 17. The build process

optionally sorted by the user, via setting eitiMXSTER_SORT_RANDGMAMASTER_SORT_AVK
MASTER_SORT_REGEX

The speci c command and arguments used depend oREMEH_USINGparameter. The example above
is for FETCH_USING=custom.

The dist les mirror run by the NetBSD Foundation uses thieror-dist les target to mirror the dist les,
if they are freely distributable. Packages settit@ SRC_ON_FTRusually to “${RESTRICTED}") will
not have their dist les mirrored.

17.6. The checksum phase

After the dist le(s) are fetched, their checksum is genedeind compared with the checksums stored in
the distinfo le. If the checksums don't match, the build iscated. This is to ensure the same dist le is
used for building, and that the dist le wasn't changed, &gsome malign force, deliberately changed
dist les on the master distribution site or network lossage

17.7. The extract phase

When the dist les are present on the local system, they nebeé extracted, as they usually come in the
form of some compressed archive format.

By default, alIDISTFILES are extracted. If you only need some of them, you can seEXT®RACT_ONLY
variable to the list of those les.

Extracting the les is usually done by a little programk/extract/extract , which already knows
how to extract various archive formats, so most likely yoll mot need to change anything here. But if
you need, the following variables may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}
Use these variables to override the default options for &etxcommand, which are de ned in
mk/extract/extract

EXTRACT_USING

This variable can be set tdtar , gtar , nbtar (which is the default valuepax, or an absolute
pathname pointing to the command with which tar archivesighibe extracted. It is preferred to
choose bsdtar over gtar if NetBSD's pax-as-tar is not goadigh.

If the extract program doesn't serve your needs, you can also overrideEXARACT_CMBariable,
which holds the command used for extracting the les. Thisiozand is executed in tHEWRKSRC}
directory. During execution of this command, the shell aaléextract_file holds the absolute

pathname of the le that is going to be extracted.

And if that still does not suf ce, you can override the-extract target in the package Make le.

76

Chapter 17. The build process

17.8. The patch phase

After extraction, all the patches named by 8%TCHFILES, those present in the patches subdirectory of
the package as well as in SLOCALPATCHES/$PKGPATH (e.g.

/usr/local/patches/graphics/png) are applied. Patch les ending i@ or.gz are uncompressed
before they are applied, les endingiorig or.rej areignored. Any special options to patch(1) can
be handed iPATCH_DIST_ARGSSeeSection 11.3or more details.

By default patch(1) is given special args to make it fail & fatches apply with some lines of fuzz.
Please x (regen) the patches so that they apply cleanly.ratienale behind this is that patches that
don't apply cleanly may end up being applied in the wrong pland cause severe harm there.

17.9. The tools phase

This is covered irChapter 18

17.10. The wrapper phase

This phase creates wrapper programs for the compilers ket . The following variables can be used
to tweak the wrappers.

ECHO_WRAPPER_MSG

The command used to print progress messages. Does nothdefdnylt. Set tas{ECHO} to see the
progress messages.

WRAPPER_DEBUG

This variable can be set t@s (default) orno, depending on whether you want additional
information in the wrapper log le.

WRAPPER_UPDATE_CACHE

This variable can be set t@s or no, depending on whether the wrapper should use its cache,
which will improve the speed. The default valug/és , but is forced tao if the platform does not
support it.

WRAPPER_REORDER_CMDS

A list of reordering commands. A reordering command has dine feorder:I: libl :lib2 . It
ensures that that libl occurs beforel lib2 .

WRAPPER_TRANSFORM_CMDS

A list of transformation commands. [TODO: investigate fignt]

17.11. The con gure phase

Most pieces of software need information on the header $gstem calls, and library routines which are
available on the platform they run on. The process of det@ngithis information is known as

77

Chapter 17. The build process

con guration, and is usually automated. In most cases, iptssrsupplied with the dist les, and its
invocation results in generation of header les, Make les;.

If the package contains a con gure script, this can be inddg settingHAS_CONFIGURID “yes”. If
the con gure script is a GNU autoconf script, you shouldGistU_CONFIGUR® “yes” instead. What
happens in theon gure phase is roughly:

for d in ${CONFIGURE_DIRS}

cd ${WRKSRC} \

&& cd ${d} \

&& env ${CONFIGURE_ENV} ${CONFIGURE_SCRIPT} ${CONFIGUREARGS}
.endfor

CONFIGURE_DIRSdefault: “.") is a list of pathnames relative WURKSRAn each of these directories,
the con gure script is run with the environme@ONFIGURE_EN¥nd argumentSONFIGURE_ARGS
The variableCONFIGURE_ENMCONFIGURE_SCRIPTdefault: “./con gure”) andCONFIGURE_ARGS
may all be changed by the package.

If the program uses the Perl way of con guration (mainly Reddules, but not only), i.e. a le called
Makefile.PL it should include./../lang/perl5/module.mk . To set any parameter for
Makefile.PL use theMAKE_PARAM@riable (e.g.MAKE_PARAMS+=foo=bar

If the program uses amakefile ~ for con guration, the appropriate steps can be invoked litireg
USE_IMAKEto “yes”. If you only need xmkmf, add it tdSE_TOOLSYou can add variables to xmkmf's
environment by adding them to tI€RIPTS_ENWariable.

If the program useemake for con guration, the appropriate steps can be invoked hiirspUSE_CMAKE
to “yes”. You can add variables to cmake's environment byirglthem to theCONFIGURE_ENVariable
and arguments to cmake by adding them toGWMAKE_ARG#ariable. The top directory argument is
given by theCMAKE_ARG_PATVariable, that defaults to “.” (relative tfONFIGURE_DIR$

If there is no con gure step at all, s&10_CONFIGURD “yes”.

17.12. The build phase

For building a package, a rough equivalent of the followindeis executed.

for d in ${BUILD_DIRS}
cd ${WRKSRC} \
&& cd ${d} \
&& env ${MAKE_ENV} \
${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
- ${MAKE_FILE} \
${BUILD_TARGET}
.endfor

BUILD_DIRS (default: “.”) is a list of pathnames relative WURKSRAn each of these directories,
MAKE_PROGRAMrun with the environmemAKE_EN\and argumentBUILD_MAKE_FLAGSThe
variablesMAKE_ENVBUILD_MAKE_FLAGSMAKE_FILE andBUILD_TARGETmay all be changed by the
package.

The default value oMAKE_PROGRABI“gmake” if USE_TOOLSontains “gmake”, “make” otherwise.
The default value ofMAKE_FILE is “Make le”, and BUILD_TARGETdefaults to “all”.

78

Chapter 17. The build process

If there is no build step at all, s&tO_BUILDto “yes”.

17.13. The test phase
[TODO]

17.14. The install phase

Once the build stage has completed, the nal step is to intalsoftware in public directories, so users
can access the programs and les.

In theinstall phase, a rough equivalent of the following code is execudditionally, before and after
this code, much magic is performed to do consistency cheegistering the package, and so on.

for d in ${INSTALL_DIRS}
cd ${WRKSRC} \
&& cd ${d} \
&& env ${MAKE_ENV} \
${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \
-f ${MAKE_FILE} \
${INSTALL_TARGET}
.endfor

The variable's meanings are analogous to the ones ihuie phaseINSTALL_DIRS defaults to
BUILD_DIRS. INSTALL_TARGETIs “install” by default, plus “install.man” itUSE_IMAKEIs de ned and
NO_INSTALL_MANPAGES not de ned.

In theinstall phase, the following variables are useful. They are allatemns of the install(1) command
that have the owner, group and permissions pré$8TALL is the plain install command. The
specialized variants, together with their intended use, ar

INSTALL_PROGRAM_DIR

directories that contain binaries

INSTALL_SCRIPT_DIR

directories that contain scripts

INSTALL_LIB_DIR

directories that contain shared and static libraries

INSTALL_DATA_DIR

directories that contain data les

INSTALL_MAN_DIR

directories that contain man pages

79

INSTALL_GAME_DIR

directories that contain data les for games

INSTALL_PROGRAM

binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

binaries that cannot be stripped

INSTALL_GAME

game binaries

INSTALL_LIB

shared and static libraries

INSTALL_DATA

data les

INSTALL_GAME_DATA

data les for games

INSTALL_MAN
man pages

Some other variables are:

INSTALL_UNSTRIPPED

Chapter 17. The build process

If set toyes, do not run strip(1) when installing binaries. Any debuggsections and symbols

present in binaries will be preserved.

INSTALLATION_DIRS

A list of directories relative t&®REFIX that are created by pkgsrc at the beginning ofitistall
phase. The package is supposed to create all needed disdtself before installing les to it and

list all other directories here.

In the rare cases that a package shouldn'tinstall anytsetO_INSTALL to “yes”. This is mostly

relevant for packages in thegress category.

17.15. The package phase

Once the install stage has completed, a binary package afgtedled les can be built. These binary
packages can be used for quick installation without prevmmpilation, e.g. by theake bin-install or

by usingpkg_add.

80

Chapter 17. The build process

By default, the binary packages are createf{PACKAGES}/All and symlinks are created in
${PACKAGES}/ category , one for each category in tt@ATEGORIES/ariable PACKAGES$lefaults to
pkgsrc/packages

17.16. Cleaning up

Once you're nished with a package, you can clean the workatry by runningnake clean If you
want to clean the work directories of all dependencies teemake clean-depends

17.17. Other helpful targets

pre/post-*
For any of the main targets described in the previous sedtiamauxiliary targets exist with “pre-"
and “post-" used as a pre x for the main target's name. Thasgsits are invoked before and after
the main target is called, allowing extra con guration ostallation steps be performed from a
package's Make le, for example, which a program's con gw@ipt or install target omitted.

do-*

Should one of the main targets do the wrong thing, and shbeletbe no variable to x this, you
can rede ne it with the do-* target. (Note that rede ning tteget itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won't be callednang, etc.) You will not usually need
to do this.

reinstall

If you did amake install and you noticed some le was not installed properly, you cgpeat the
installation with this target, which will ignore the “alréginstalled” ag.

This is the default value ddEPENDS_TARGESxcept in the case ahake updateandmake
package where the defaults are “package” and “update”, respdygtive
deinstall

This target does a pkg_delete(1) in the current directdigcvely de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE
Add a "-v" to the pkg_delete(1) command.

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given gackais can be used to remove
any packages that may have been pulled in by a given packagd,rmake deinstall
DEINSTALLDEPENDS=1 is done inpkgsrc/x11/kde |, this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

81

Chapter 17. The build process

bin-install

Install a binary package from local disk and via FTP from tdfssites (see thBINPKG_SITES
variable), and do anake packageif no binary package is available anywhere. The argumer&gi
to pkg_addcan be set viBIN_INSTALL_FLAGS e.g., to do verbose operation, etc.

install-clean

This target removes the state les for the "install" and iqtieases so that the "install" target may be
re-invoked. This can be used after editing the PLIST to Ih#fta package without rebuilding it.

build-clean

This target removes the state les for the "build" and lateages so that the "build" target may be
re-invoked.

update

This target causes the current package to be updated tadisevarsion. The package and all
depending packages rst get de-installed, then currergioas of the corresponding packages get
compiled and installed. This is similar to manually notingigh packages are currently installed,
then performing a series afiake deinstallandmake install (or whatevetUPDATE_TARGETS set
to) for these packages.

You can use the “update” target to resume package updaticasim a previousiake updatewas
interrupted for some reason. However, in this case, maleysur don't callmake cleanor
otherwise remove the list of dependent packag&sRKDIR Otherwise, you lose the ability to
automatically update the current package along with thedeéent packages you have installed.

Resuming an interruptedake updatewill only work as long as the package tree remains
unchanged. If the source code for one of the packages to egbas been changed, resuming
make updatewill most certainly fail!

The following variables can be used either on the commarddirinmk.conf to alter the
behaviour ofmake update

UPDATE_TARGET

Install target to recursively use for the updated packagelae dependent packages. Defaults
to DEPENDS_TARGHT set, “install” otherwise fomake update Other good targets are
“package” or “bin-install”. Do not set this to “update” or yavill get stuck in an endless loop!

NOCLEAN

Don't clean up after updating. Useful if you want to leave ik sources of the updated
packages around for inspection or other purposes. Be surewantually clean up the source
tree (see the “clean-update” target below) or you may rumtitubles with old source code
still lying around on your nextnake or make update

REINSTALL

Deinstall each package before installing (makif#PENDS_TARGHETThis may be necessary
if the “clean-update” target (see below) was called aftegrimipting a runningnake update

82

Chapter 17. The build process

DEPENDS_TARGET

Allows you to disable recursion and hardcode the targetéokpges. The default is “update”
for the update target, facilitating a recursive update efgquisite packages. Only set
DEPENDS_TARGEHTyou want to disable recursive updates. WSeDATE_TARGEIihstead to
just set a speci c target for each package to be installethdumake update(see above).

clean-update

Clean the source tree for all packages that would get updfateake updatewas called from the
current directory. This target should not be used if theentrpackage (or any of its depending
packages) have already been de-installed (e.g., aftémngaiake updaté or you may lose some
packages you intended to update. As a rule of thumb: onlyhisg¢argeteforethe rst time you
run make updateand only if you have a dirty package tree (e.g., if you use&tCLEAN

If you are unsure about whether your tree is clean, you caemejterform anake cleanat the top

of the tree, or use the following sequence of commands frenditectory of the package you want
to update lfeforerunningmake updatefor the rst time, otherwise you lose all the packages you
wanted to update!):

make clean-update

make clean CLEANDEPENDS=YES
make update

The following variables can be used either on the commarddirinmk.conf to alter the
behaviour oimake clean-update

CLEAR_DIRLIST

After make clean do not reconstruct the list of directories to update fos fjackage. Only use
this if make updatesuccessfully installed all packages you wanted to updatemidlly, this is
done automatically omake update but may have been suppressed byNlECLEANariable
(see above).

replace

Update the installation of the current package. This diffesm update in that it does not replace
dependent packages. You will need to ingtétitools/pkg_tarup for this target to work.

Be careful when using this targethere are no guarantees that dependent packages will sthkl w
in particular they will most certainly break if yanake replacea library package whose shared
library major version changed between your installed wersind the new one. For this reason, this
target is not of cially supported and only recommended fdvanced users.

info

This target invokes pkg_info(1) for the current packageu ¥an use this to check which version of
a package is installed.

83

Chapter 17. The build process

index

This is a top-level command, i.e. it should be used ingkwsrc directory. It creates a database of
all packages in the local pkgsrc tree, including depenasncomment, maintainer, and some other
useful information. Individual entries are created by riagmmake describein the packages'
directories. This index le is saved akgsrc/INDEX . It can be displayed in verbose format by
runningmake print-index. You can search in it witimake search keysomething . You can

extract a list of all packages that depend on a particulabgnenningmake show-deps
PKG=somepackage .

Running this command takes a very long time, some hours avéasb machines!

readme

This target generatesREADME.html le, which can be viewed using a browser such as
wwwi/firefox orwwwi/links . The generated les contain references to any packagedwahnein
the PACKAGESlirectory on the local host. The generated les can be madefér to URLs based
ONFTP_PKG_URL_HOSandFTP_PKG_URL_DIR For example, if | wanted to generate
README.html les which pointed to binary packages on the local machinghge directory
Jusr/packages , setFTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages .The${PACKAGES}directory and its subdirectories will be
searched for all the binary packages.

The target can be run at the toplevel or in category direg$oin which case it descends recursively.

readme-all

This is a top-level command, run it pkgsrc . Use this target to create a README-all.html
which contains a list of all packages currently availabléhie NetBSD Packages Collection,
together with the category they belong to and a short dagmmiprhis le is compiled from the
pkgsrc/ */README.html les, so be sure to run thiafter amake readme

cdrom-readme

This is very much the same as the “readme” target (see allmue} to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also pred®EADME.html les, and can be
made to refer to URLs based @DROM_PKG_URL_HO&MJCDROM_PKG_URL_DIR

show-dist les
This target shows which dist les and patch les are needebluitd the packageALLFILES , which
contains alDISTFILES andPATCHFILES, but notpatches/ *).

show-downlevel

This target shows nothing if the package is not installed.uérsion of this package is installed, but
is not the version provided in this version of pkgsrc, thereaning message is displayed. This
target can be used to show which of your installed packagedawnlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir

This target shows the directory in the pkgsrc hierarchy framich the package can be built and
installed. This may not be the same directory as the one froiohithe package was installed. This
target is intended to be used by people who may wish to upgnaas packages on a single host,

84

Chapter 17. The build process

and can be invoked from the top-level pkgsrc Make le by uding “show-host-speci c-pkgs”
target.

show-installed-depends
This target shows which installed packages match the cupssrkage'©DEPENDSUseful if out of
date dependencies are causing build problems.

print-build-depends-list
This target shows the list of packages that the current peclepends on for building.

print-run-depends-list

This target shows the list of packages that the current gpclapends on for running.

check-shlibs

After a package is installed, check all its binaries and (bR platforms) shared libraries to see if
they nd the shared libs they need. Run by defauRKG_DEVELOPER set inmk.conf .

print-PLIST

After a “make install” from a new or upgraded pkg, this priotg an attempt to generate a new
PLIST from a nd -newer work/.extract_done. An attempt is made to care for shared libs etc., but
it is stronglyrecommended to review the result before putting it iPtéST . On upgrades, it's

useful to diff the output of this command against an alreadistiag PLIST le.

If the package installs les via tar(1) or other methods tthan't update le access times, be sure to
add these les manually to yolRLIST , as the “ nd -newer” command used by this target won't
catch them!

SeeSection 13.3or more information on this target.

bulk-package

Used to do bulk builds. If an appropriate binary packageaalyeexists, no action is taken. If not,
this target will compile, install and package it (and its €legs, ifPKG_DEPEND# set properly. See
Chapter J. After creating the binary package, the sources, theifsttlled package and its
required packages are removed, preserving free disk space.

Beware that this target may deinstall all packages insththe a system!

bulk-install

Used during bulk-installs to install required packageaniup-to-date binary package is available,
it will be installed via pkg_add(1). If notnake bulk-packagewill be executed, but the installed
binary won't be removed.

A binary package is considered “up-to-date” to be instalfiadokg_add(1) if:
- None of the package's lesMakefile |, ...) were modi ed since it was built.
- None of the package's required (binary) packages were neddsince it was built.

Beware that this target may deinstall all packages insththe a system!

85

Chapter 18.
Tools needed for building or
running

TheUSE_TOOLSle nition is used both internally by pkgsrc and also for widual packages to de ne
what commands are needed for building a package Bik&D_DEPEND$or for later run-time of an
installed packaged (such BEPEND3} If the native system provides an adequate tool, then inyman
cases, a pkgsrc package will not be used.

When building a package, the replacement tools are madkiabhein a directory (as symlinks or
wrapper scripts) that is early in the executable search gast like the buildlink system, this helps with
consistent builds.

A tool may be needed to help build a speci ¢ package. For exanperl, GNU make (gmake) or yacc
may be needed.

Also a tool may be needed, for example, because the natitensgssupplied tool may be inef cient for
building a package with pkgsrc. For example, a package megt @NU awk, bison (instead of yacc) or
a better sed.

The tools used by a package can be listed by runmiage show-tools

18.1. Tools for pkgsrc builds

The default set of tools used by pkgsrc is de ned#a.pkg.mk . This includes standard Unix tools,
such ascat, awk, chmod, test, and so on. These can be seen by runnimgke show-var
VARNAME=USE_TOOLS.

If a package needs a speci ¢ program to build thenuls&_TOOLSariable can be used to de ne the
tools needed.

18.2. Tools needed by packages

In the following examples, the :run means that it is neededratime (and becomes a DEPENDS). The
default is a build dependency which can be set with :build.i{&his example, it is the same as
gmake:build and pkg-con g:build.)

USE_TOOLS+= gmake perl:run pkg-config

When using the tools framework T®OLS_PATH.foo variable is de ned which contains the full path to
the appropriate tool. For exampEOOLS_PATH.bash could be “/bin/bash” on Linux systems.

If you always need a pkgsrc version of the tool at run-timentjust usedEPENDSnstead.

86

Chapter 18. Tools needed for building or running

18.3. Tools provided by platforms

When improving or porting pkgsrc to a new platform, have &lab(or create) the corresponding
platform speci ¢ make le fragment undgikgsrc/mki/tools/tools.${OPSYS}.mk which de nes
the name of the common tools. For example:

.if exists(/usr/bin/bzcat)

TOOLS_PLATFORM.bzcat?= lusr/bin/bzcat

.elif exists(/usr/bin/bzip2)

TOOLS_PLATFORM.bzcat?= lusr/bin/bzip2 -cd

.endif

TOOLS_PLATFORM.true?= true # shell builtin

87

Chapter 109.
Making your package work

19.1. General operation

One appealing feature of pkgsrc is that it runs on many diffeplatforms. As a result, it is important to
ensure, where possible, that packages in pkgsrc are paritis chapter mentions some particular
details you should pay attention to while working on pkgsrc.

19.1.1. How to pull in user-settable variables from mk.conf

The pkgsrc user can con gure pkgsrc by overriding severahtées in the le pointed to byAKECONF
which ismk.conf by default. When you want to use those variables in the pogmsor directives of
make(1) (for examplef or.for), you need to include the le/../mk/bsd.prefs.mk before,
which in turn loads the user preferences.

But note that some variables may not be completely de neet aft./mk/bsd.prefs.mk has been
included, as they may contain references to variables thaiat yet de ned. In shell commands (the
lines inMakefile that are indented with a tab) this is no problem, since végare only expanded
when they are used. But in the preprocessor directives orediabove and in dependency lines (of the
formtarget: dependencies) the variables are expanded at load time.

Note: To check whether a variable can be used at load time, run pkglint -Wall on your package.

19.1.2. User interaction

Occasionally, packages require interaction from the @set this can be in a number of ways:

« When fetching the dist les, some packages require useraot®mn such as entering
username/password or accepting a license on a web page.

« When extracting the dist les, some packages may ask fonparsts.
- help to con gure the package before it is built

« help during the build process

« help during the installation of a package

A package can set tHETERACTIVE_STAGEvariable to de ne which stages need interaction. This
should be done in the packag®lakefile , e.g.:

INTERACTIVE_STAGE= configure install

88

Chapter 19. Making your package work

The user can then decide to skip this package by settingAm€Hvariable. Packages that require
interaction are also excluded from bulk builds.

19.1.3. Handling licenses

Authors of software can choose the licence under which soéwan be copied. The Free Software
Foundation has declared some licenses "Free", and the @GpeoeSnitiative has a de nition of "Open
Source".

By default, pkgsrc allows packages with Free or Open Soireases to be built. To allow packages
with other licenses to be built as well, the pkgsrc user néedsld these licenses to the
ACCEPTABLE_LICENSE®Sariable inmk.conf . Note that this variable only affects which packages may
bebuilt, while the license terms often also restrict the actual tiskeopackage and its redistribution.

One might want to only install packages with a BSD licensdéherGPL, and not the other. The free
licenses are added to the defaAtCEPTABLE_LICENSESariable. The pkgsrc user can override the
default by setting thaCCEPTABLE_LICENSESariable with "=" instead of "+=". The licenses accepted
by default are de ned in thBEFAULT_ACCEPTABLE_LICENSE@&riable in the le

pkgsrc/mk/license.mk

The license tag mechanism is intended to address copynétdited issues surrounding building,
installing and using a package, and not to address redistiibissues (SeRESTRICTEDand
NO_SRC_ON_FTRetc.). Packages with redistribution restrictions shaeltthese tags.

Denoting that a package may be copied according to a patiicénse is done by placing the license in
pkgsrc/licenses and setting th&lICENSE variable to a string identifying the license, e.g. in
graphics/xv

LICENSE= xv-license

When trying to build, the user will get a notice that the pagkas covered by a license which has not
been placed in theaCCEPTABLE_LICENSESariable:

% make

===> xv-3.10anb9 has an unacceptable license: xv-license.

===> To view the license, enter "/usr/bin/make show-licens e".
===> To indicate acceptance, add this line to your /etc/mk.c onf:
===> ACCEPTABLE_LICENSES+=xv-license

*xx Error code 1

The license can be viewed withake show-licenseand if the user so chooses, the line printed above
can be added tmk.conf to convey to pkgsrc that it should not in the future fail bezaaf that license:

ACCEPTABLE_LICENSES+=xv-license

The use of.ICENSE=shareware , LICENSE=no-commercial-use , and similar language is deprecated
because it does not crisply refer to a particular license faxother problem with such usage is that it
does not enable a user to tell pkgsrc to proceed for a singleage without also telling pkgsrc to
proceed for all packages with that tag.

89

Chapter 19. Making your package work

19.1.3.1. Adding a package with a new license

When adding a package with a new license, the following stepsequired:

1. Check whether the license quali es as Free or Open Sowyrcefbrencing Various Licenses and
Comments about Them (http://www.gnu.org/licenses/beelist.en.html) and Licenses by Name |
Open Source Initiative (http://opensource.org/licefapblabetical). If this is the case, the lename
in pkgsrc/licenses/ does not need thdicense suf x, and the license name should be added
to:

« DEFAULT_ACCEPTABLE_LICENSES impkgsrc/mk/license.mk

- default_acceptable_licensesikysrc/pkgtools/pkg_install/files/lib/license.c

2. The license text should be addedigsrc/licenses for displaying. A list of known licenses can
be seen in this directory.

19.1.3.2. Change to the license

When the license changes (in a way other than formattingjersare that the new license has a different
name (e.g., append the version number if it exists, or the) dawist because a user told pkgsrc to build
programs under a previous version of a license does not rhaapkgsrc should build programs under
the new licenses. The higher-level point is that pkgsrc datgvaluate licenses for reasonableness; the
only test is a mechanistic test of whether a particular testlieen approved by either of two bodies (FSF
or OSI).

19.1.4. Restricted packages

Some licenses restrict how software may be re-distriblgdleclaring the restrictions, package tools
can automatically refrain from e.g. placing binary paclsage FTP sites.

There are four possible restrictions, which are the crosdymt of sources (dist les) and binaries not
being placed on FTP sites and CD-ROMSs. Because this is rérelgxact language in any license, and
because non-Free licenses tend to be different from eaeh, gtkgsrc adopts a de nition of FTP and
CD-ROM. "FTP" means making the source or binary le avaigbler the Internet at no charge.
"CD-ROM" means making the source or binary available on skime of media, together with other
source and binary packages, which is sold for a distributiarge.

In order to encode these restrictions, the package systerasi@e make variables that can be set to
note these restrictions:

+ RESTRICTED

This variable should be set whenever a restriction exisgga(dless of its kind). Set this variable to a
string containing the reason for the restriction. It shdagdunderstood that those wanting to
understand the restriction will have to read the licensd,marhaps seek advice of counsel.

« NO_BIN_ON_CDROM

90

Chapter 19. Making your package work

Binaries may not be placed on CD-ROM containing other bimpegkages, for which a distribution
charge may be made. In this case, set this varial$¢RESTRICTED} .

« NO_BIN_ON_FTP

Binaries may not made available on the Internet withoutghan this case, set this variable to
${RESTRICTED}. If this variable is set, binary packages will not be incldda ftp.NetBSD.org.

. NO_SRC_ON_CDROM

Dist les may not be placed on CD-ROM, together with othett ¢is, for which a fee may be charged.
In this case, set this variable $$RESTRICTED} .

. NO_SRC_ON_FTP

Dist les may not made available via FTP at no charge. In thiss; set this variable to
${RESTRICTED}. If this variable is set, the dist le(s) will not be mirroremh ftp.NetBSD.org.

Please note that packages will be removed from pkgsrc wheedigi les are not distributable and cannot
be obtained for a period of one full quarter branch. Packagasmanual/interactive fetch must have a
maintainer and it is his/her responsibility to ensure this.

19.1.5. Handling dependencies

Your package may depend on some other package being presehthere are various ways of
expressing this dependency. pkgsrc support8thieD_DEPENDSandDEPENDSIe nitions, the
USE_TOOLSle nition, as well as dependencies \haildlink3.mk , which is the preferred way to
handle dependencies, and which uses the variables nameel &s@Chapter 14or more information.

The basic difference between the two variables is as folldlwe DEPENDSIe nition registers that
pre-requisite in the binary package so it will be pulled inentihe binary package is later installed,
whilst theBUILD_DEPENDSIe nition does not, marking a dependency that is only neddefuilding
the package.

This means that if you only need a package present whilst g@buglding, it should be noted as a
BUILD_DEPENDS

The format for 8BUILD_DEPENDSand aDEPENDSIe nition is:
<pre-reg-package-name>:../../<category>/<pre-req-pa ckage>

Please note that the “pre-req-package-name” may incluglefahe wildcard version numbers
recognized by pkg_info(1).

1. If your package needs another package's binaries orrids o build and run, and if that package
has abuildlink3.mk le available, use it:

.include "../../graphics/jpeg/buildlink3.mk"

2. If your package needs another package's binaries origsranly for building, and if that package
has abuildlink3.mk le available, use it:

.include "../../graphics/jpeg/buildlink3.mk"

but setBUILDLINK_DEPMETHODjpeg ?=build to make it a build dependency only. This case is
rather rare.

91

Chapter 19. Making your package work

3. If your package needs binaries from another package 0, luse theBUILD_DEPENDSIe nition:
BUILD_DEPENDS+= scons-[0-9] =:../../devel/scons

4. If your package needs a library with which to link and thisreobuildlink3.mk le available,
create one. UsSinDEPENDSvon't be suf cient because the include les and librariedivibie hidden
from the compiler.

5. If your package needs some executable to be able to ruactigrand if there's nduildlink3.mk
le, this is speci ed using theDEPEND%ariable. Theprint/lyx package needs to be able to
execute the latex binary from the tex-latex-bin packagennhrins, and that is speci ed:

DEPENDS+= tex-latex-bin-[0-9] *:../../print/tex-latex-bin

6. You can use wildcards in package dependencies. Noteublatgldcard dependencies are retained
when creating binary packages. The dependency is checkeul iwstalling the binary package and
any package which matches the pattern will be used. Wilddepgndencies should be used with
care.

The “-[0-9]*” should be used instead of “-*” to avoid poteally ambiguous matches such as
“tk-postgresql” matching a “tk-*DEPENDS

Wildcards can also be used to specify that a package will louilgl against a certain minimum
version of a pre-requisite:

DEPENDS+= ImageMagick>=6.0:../../graphics/ImageMagic k

This means that the package will build using version 6.0 aideMagick or newer. Such a
dependency may be warranted if, for example, the commaaadlitions of an executable have
changed.

If you need to depend on minimum versions of libraries, seebtkildlink section of the pkgsrc
guide.

For security xes, please update the package vulneradslite. SeeSection 19.1.9or more
information.

If your package needs les from another package to build,thédelevant distribution les to
DISTFILES , so they will be extracted automatically. See phiet/ghostscript package for an
example. (It relies on the jpeg sources being present ircedarm during the build.)

19.1.6. Handling con icts with other packages

Your package may con ict with other packages a user miglgaaly have installed on his system, e.g. if
your package installs the same set of les as another padkabe pkgsrc tree or has the saPKGNAME

For examplex11/libXxaw3d andxl1/Xaw-Xpm install the same shared library, thus you set in
pkgsrc/x11/libXaw3d/Makefile

CONFLICTS= Xaw-Xpm-[0-9] *

and inpkgsrc/x11/Xaw-Xpm/Makefile

CONFLICTS= libXaw3d-[0-9] =

92

Chapter 19. Making your package work

pkg_add(1) is able to detect attempts to install packagestn ict with existing packages and abort.
However, in many situations this is too late in the proce#saly package managers will not know about
the con ict until they attempt to install the package aftbeady downloading it and all its dependencies.
Users may also waste time building a package and its depeiesdeonly to nd out at the end that it

con icts with another package they have installed.

To avoid these issuesONFLICTSentries should be added in all cases where it is known thdigoms
con ict with each other. Thes€ONFLICTSentries are exported in pkg_summary(5) les and consumed
by binary package managers to inform users that packagestha installed onto the target system.

19.1.7. Packages that cannot or should not be built

There are several reasons why a package might be instructexd build under certain circumstances. If
the package builds and runs on most platforms, the excepsioould be noted with
BROKEN_ON_PLATFORNIthe package builds and runs on a small handful of platiyset
BROKEN_EXCEPT_ON_PLATFORstead. BotrBROKEN_ON_PLATFORivd
BROKEN_EXCEPT_ON_PLATFO®&M OS triples (OS-version-platform) that can use glotestyidcards.

If a package is not appropriate for some platforms (as opgptwsmerely broken), a different set of
variables should be used as this affects failure reportiugstatistics. If the package is appropriate for
most platforms, the exceptions should be noted WitlT_FOR_PLATFORNf the package is appropriate
for only a small handful of platforms (often exactly one), @8ILY_FOR_PLATFORiMstead. Both
ONLY_FOR_PLATFORMANOT_FOR_PLATFORate OS triples (OS-version-platform) that can use
glob-style wildcards.

Some packages are tightly bound to a speci ¢ version of amatjpey system, e.g. LKMs or

sysutils/Isof . Such binary packages are not backwards compatible wittr otrsions of the OS,

and should be uploaded to a version speci ¢ directory on fhie server. Mark these packages by setting
OSVERSION_SPECIFICto “yes”. This variable is not currently used by any of the ksge system
internals, but may be used in the future.

If the package should be skipped (for example, becauseviges functionality already provided by the
system), sePKG_SKIP_REASOND a descriptive message. If the package should fail beczrse
preconditions are not met, SekG_FAIL_REASONo a descriptive message.

19.1.8. Packages which should not be deleted, once installe d

To ensure that a package may not be deleted, once it has Istelteid, thePKG_PRESERVEe nition
should be set in the package Make le. This will be carriesdiahy binary package that is made from this
pkgsrc entry. A “preserved” package will not be deleted ggikg_delete(1) unless the “-f” option is
used.

19.1.9. Handling packages with security problems

When a vulnerability is found, this should be noted in
localsrc/security/advisories/pkg-vulnerabilities , and after committing that le, ask
pkgsrc-security@NetBSD.org to update the le on ftp.NefB&g.

93

Chapter 19. Making your package work

After xing the vulnerability by a patch, itPKGREVISIONshould be increased (this is of course not
necessary if the problem is xed by using a newer release@ttftware), and the pattern in the
pkg-vulnerabilities le must be updated.

Also, if the x should be applied to the stable pkgsrc brarted sure to submit a pullup request!
Binary packages already on ftp.NetBSD.org will be handksdisautomatically by a weekly cron job.

19.1.10. How to handle incrementing versions when xing an e xisting
package

When making xes to an existing package it can be useful tangeghe version number PKGNAMETO
avoid con icting with future versions by the original autha “nb1”, “nb2”, ... suf x can be used on
package versions by settifttGREVISION=1(2, ...). The “nb” is treated like a “.” by the package tools.

e.g.
DISTNAME= foo-17.42

PKGREVISION= 9

will result in aPKGNAMBT “foo-17.42nb9". If you want to use the original valuePKGNAMRithout
the “nbX” suf x, e.g. for settingDIST_SUBDIR, usePKGNAME_NOREV

When a new release of the package is release®KIEREVISIONshould be removed, e.g. on a new
minor release of the above package, things should be like:

DISTNAME= foo-17.43

PKGREVISIONshould be incremented for any non-trivial change in theltiegubinary package. Without
aPKGREVISIONbump, someone with the previous version installed has nooigowing that their
package is out of date. Thus, changes without increa@@REVISIONare essentially labeled "this is so
trivial that no reasonable person would want to upgraded this is the rough test for when increasing
PKGREVISIONIs appropriate. Examples of changes that do not merit isang@KGREVISIONare:

« ChangingHOMEPAGBMAINTAINER, OWNERor comments in Make le.
- Changing build variables if the resulting binary packagidésame.

« ChangingdDESCR

- Adding PKG_OPTIONSf the default options don't change.

Examples of changes that do merit an increasektGREVISIONinclude:

- Security xes

- Changes or additions to a patch le

« Changes to theLIST

- A dependency is changed or renamed.

PKGREVISION must also be incremented when dependenciesABl/changes.

94

Chapter 19. Making your package work

19.1.11. Substituting variable text in the package les (th e SUBST
framework)
When you want to replace the same text in multiple les or whiereplacement text varies, patches

alone cannot help. This is where the SUBST framework comdspnovides an easy-to-use interface for
replacing textin les. Example:

SUBST_CLASSES+= fix-paths

SUBST_STAGE fix-paths= pre-configure

SUBST_MESSAGE fix-paths= Fixing absolute paths.

SUBST_FILES fix-paths= src/ *.C

SUBST_FILES fix-paths+= scripts/ *.sh

SUBST_SED.fix-paths= -e 's,"lusr/local,"${PREFIX},g'
SUBST_SED.fix-paths+= -e 's,"/var/log,"${VARBASE}/log g’

SUBST_CLASSESs a list of identi ers that are used to identify the diffete3IUBST blocks that are
de ned. The SUBST framework is heavily used by pkgsrc, se ifriportant to always use the
operator with this variable. Otherwise some substitutinay be skipped.

The remaining variables of each SUBST block are parametridth the identi er from the rstline
(fix-paths in this case.) They can be seen as parameters to a functlon cal

SUBST_STAGE* speci es the stage at which the replacement will take platlecombinations ofpre- ,

do- andpost- together with a phase name are possible, though only fewctwally used. Most
commonly used arpost-patch andpre-configure . Of these twopre-configure should be
preferred because then it is possible to bamake patchand have the state after applying the patches but
before making any other changes. This is especially usdfehwou are debugging a package in order to
create new patches for it. Similarlypst-build is preferred ovepre-install , because the install
phase should generally be kept as simple as possible. Whensgpost-build , you have the same

les in the working directory that will be installed laterpyou can check if the substitution has
succeeded.

SUBST_MESSAGE:. is an optional text that is printed just before the substituis done.

SUBST_FILES. = is the list of shell globbing patterns that speci es the leswhich the substitution will
take place. The patterns are interpreted relatively toMR&SRdirectory.

SUBST_SED+ is a list of arguments to sed(1) that specify the actual gultisin. Every sed command
should be pre xed withe , so that all SUBST blocks look uniform.

There are some more variables, but they are so seldomly haethey are only documented in the
mk/subst.mk le.

19.2. The fetch phase

19.2.1. Packages whose dist les aren't available for plain downloading

If you need to download from a dynamic URL you can BENAMIC_MASTER_SITE&nd amake fetch
will call files/getsite.sh with the name of each le to download as an argument, expgdtito
output the URL of the directory from which to downloadgtaphics/ns-cult3d is an example of
this usage.

95

Chapter 19. Making your package work

If the download can't be automated, because the user mustispbrsonal information to apply for a
password, or must pay for the source, or whatever, you cafE§&tH_MESSAG a list of lines that are
displayed to the user before aborting the build. Example:

FETCH_MESSAGE= "Please download the files"
FETCH_MESSAGE+= " "${DISTFILES:Q}
FETCH_MESSAGE+= "manually from "${MASTER_SITES:Q}"."

19.2.2. How to handle modi ed dist les with the 'old' name

Sometimes authors of a software package make some modirta#ifter the software was released, and
they put up a new dist le without changing the package's imrsiumber. If a package is already in
pkgsrc at that time, the checksum will no longer match. Theets of the new dist le should be
compared against the old one before changing anything, ke sare the dist le was really updated on
purpose, and that no trojan horse or so crept in. Please anghtit the dist les were compared and what
was found in your commit message.

Then, the correct way to work around this is to B&3T_SUBDIR to a unique directory name, usually
based olPKGNAME_NOREkut take care with python or ruby packages, wHek&NAMihcludes a
variable pre x). All DISTFILES andPATCHFILESfor this package will be put in that subdirectory of the
local dist les directory. (Se&ection 19.1.1@or more details.) In case this happens more often,
PKGNAMEan be used (thus including theX suf x) or a date stamp can be appended, like
${PKGNAME_NOREV}-YYYYMMDD

DIST_SUBDIR is also used when a dist le's name does not contain a vergiadkttae dist le is apt to
change. In cases where the likelihood of this is very srmefiT SUBDIR might not be required.
Additionally, DIST_SUBDIR must not be removed unless the dist le name changes, evepatkage is
being moved or renamed.

Do not forget regenerating thiistinfo le after that, since it contains thBIST_SUBDIR path in the
lenames. Also, increase the PKGREVISION if the installeatgage is different. Furthermore, a mail to
the package's authors seems appropriate telling them tizaiiging dist les after releases without
changing the le names is not good practice.

19.2.3. Packages hosted on github.com

Helper methods exist for packages hosted on github.comhaiit often have dist le names that clash
with other packages, for example.tar.gz . Use one of the three recipes from below:

19.2.3.1. Fetch based on a tagged release

If your dist le URL looks similar to
http://github.com/username/exampleproject/archive/v 1.0.zip ,thenyou are packaging a
tagged release.

DISTNAME= exampleproject-1.0

MASTER_SITES= ${MASTER_SITE_GITHUB:=usernamef/}
#GITHUB_PROJECT= # can be omitted if same as DISTNAME
GITHUB_TAG= v${PKGVERSION_NOREV}

EXTRACT _SUFX= .zip

96

Chapter 19. Making your package work

19.2.3.2. Fetch based on a speci ¢ commit

If your dist le URL looks similar to
http://github.com/example/example/archive/988881adc 9fc3655077dc2d4d757d480b5ealell. tar.gz
then you are packaging a speci c commit not tied to a release.

DISTNAME= example-1.0

MASTER_SITES= ${MASTER_SITE_GITHUB:=example/}
#GITHUB_PROJECT= # can be omitted if same as DISTNAME
GITHUB_TAG= 988881adc9fc3655077dc2d4d757d480b5ealell

19.2.3.3. Fetch based on release

If your dist le URL looks similar to
http://github.com/username/exampleproject/releases/ download/rel-1.6/offensive-1.6.zip
then you are packaging a release.

DISTNAME= offensive-1.6

PKGNAME= ${DISTNAME:S/offensive/proper/}

MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}

GITHUB_PROJECT= exampleproject

GITHUB_RELEASE= rel-${PKGVERSION_NOREV} # usually just s et this to ${DISTNAME}
EXTRACT_SUFX= .zip

19.3. The con gure phase

19.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with differerjeotformats like a.out and ELF, and varying
abilities to do shared library and dynamic loading at allaBeompany this, varying commands and
options have to be passed to the compiler, linker, etc. tthgeRight Thing, which can be pretty
annoying especially if you don't have all the machines atnjand to test things. Thaevel/libtool

pkg can help here, as it just “knows” how to build both statid @ynamic libraries from a set of source
les, thus being platform-independent.

Here's how to use libtool in a package in seven simple steps:

1. AddUSE_LIBTOOL=yes to the package Make le.

2. For library objects, use “${LIBTOOL} --mode=compile ${&}" in place of “${CC}". You could
even add it to the de nition o€G if only libraries are being built in a given Make le. This en
command will build both PIC and non-PIC library objects, sayeed not have separate shared and
non-shared library rules.

3. For the linking of the library, remove any “ar”, “ranlibdnd “Id -Bshareable” commands, and
instead use:

${LIBTOOL} --mode=link \

97

Chapter 19. Making your package work

${CC} -0 ${.TARGET:.a=.la} \
${OBJS:.0o=.l0} \
-rpath ${PREFIX}/lib \
-version-info major:minor

Note that the library is changed to haveza extension, and the objects are changed to hake a
extension. Chang@BJSas necessary. This automatically creates all ofdheso.major.minor ,
and ELF symlinks (if necessary) in the build directory. Beesto include “-version-info”, especially
when major and minor are zero, as libtool will otherwisepstrif the shared library version.

From the libtool manual:

So, libtool library versions are described by three integer s:
CURRENT
The most recent interface number that this library implemen ts.
REVISION

The implementation number of the CURRENT interface.

AGE
The difference between the newest and oldest interfaces tha t
this library implements. In other words, the library implem ents

all the interface numbers in the range from number "CURRENT -
AGE' to "CURRENT".

If two libraries have identical CURRENT and AGE numbers, the n the
dynamic linker chooses the library with the greater REVISIO N number.

The “-release” option will produce different results fooat and ELF (excluding symlinks) in only
one case. An ELF library of the form “libfoo-releasexsg. will have a symlink of “libfoo.sox.y”
on an a.out platform. This is handled automatically.

The “-rpath argument” is the install directory of the libydreing built.
In thePLIST, include only thela e, the other les will be added automatically.

. When linking shared objecisp) les, i.e. les that are loaded via dlopen(3), NOT shardutéries,
use “-module -avoid-version” to prevent them getting vensiacked on.

ThePLIST le gets thefoo.so entry.

. When linking programs that depend on these libravefsrethey are installed, preface the cc(1) or
[d(1) line with “${LIBTOOL} --mode=link”, and it will nd th e correct libraries (static or shared),
but please be aware that libtool will not allow you to speeifielative path in -L (such as
“-L../somelib”), because it expects you to change that argjt to be thela le. e.g.

${LIBTOOL} --mode=link ${CC} -0 someprog -L../somelib -Is omelib
should be changed to:

${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la

and it will do the right thing with the libraries.

. When installing libraries, preface the install(1) orp§ommand with “${LIBTOOL}
--mode=install’, and change the library namelto . e.g.

${LIBTOOL} --mode=install ${BSD_INSTALL_LIB} ${SOMELIB -.a=la} ${PREFIX}/lib

98

Chapter 19. Making your package work

This will install the statica , shared library, any needed symlinks, and run Idcon g(8).

7. InyourPLIST, include only thela le (this is a change from previous behaviour).

19.3.2. Using libtool on GNU packages that already support | ibtool

Add USE_LIBTOOL=yes to the package Make le. This will override the package's ditatool in most
cases. For older libtool using packages, libtool is madedmnlg script during the do-con gure step;
you can check the libtool script location by doimgke con gure; nd work*/ -name libtool .

LIBTOOL_OVERRIDEspeci es which libtool scripts, relative toeyRKSR{o override. By default, it is set
to “libtool */libtool */*/libtool”. If this does not match he location of the package's libtool script(s), set
it as appropriate.

If you do not need .a static libraries built and installed, then USHLIBTOOL_OVERRIDENStead.

If your package makes use of the platform-independentrijtfiar loading dynamic shared objects, that
comes with libtool (libltdl), you should include develftitil/buildlink3.mk.

Some packages use libtool incorrectly so that the packagenatavork or build in some circumstances.
Some of the more common errors are:

- The inclusion of a shared object (-module) as a dependeatyilin an executable or library. This in
itself isn't a problem if one of two things has been done:

1. The shared object is named correctly, lilgoo.la , notfoo.la

2. The -dlopen option is used when linking an executable.

- The use of libltdl without the correct calls to initialisai routines. The function It_dlinit() should be
called and the macroTDL_SET_PRELOADED_SYMBOIr&luded in executables.

19.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed¢nerate the con gure script and
Make le.in make le templates, then they should be execlited pre-con gure target.

For packages that need only autoconf:

AUTOCONF_REQD= 2.50 # if default version is not good enough
USE_TOOLS+= autoconf # use "autoconf213" for autoconf-2.1 3

pre-configure:
cd ${WRKSRC} && autoconf

and for packages that need automake and autoconf:

AUTOMAKE_REQD= 1.7.1 # if default version is not good enough
USE_TOOLS+= automake # use "automakel4" for automake-1.4

99

Chapter 19. Making your package work

pre-configure:
set -e; cd ${WRKSRC}; \
aclocal; autoheader; automake -a --foreign -i; autoconf

Packages which use GNU Automake will almost certainly rejGINU Make.

There are times when the con gure process makes additidraadges to the generated les, which then
causes the build process to try to re-execute the automgkesee. This is prevented by touching
various les in the con gure stage. If this causes problenithwour package you can set
AUTOMAKE_OVERRIDE=N®the package Make le.

19.4. Programming languages

19.4.1. C, C++, and Fortran

Compilers for the C, C++, and Fortran languages comes wiN#tBSD base system. By default,
pkgsrc assumes that a package is written in C and will hidethér compilers (via the wrapper
framework, se€hapter 14

To declare which language's compiler a package needs,seisth LANGUAGE@riable. Allowed
values currently are “c”, “c++”, and “fortran” (and any comhtion). The default is “c”. Packages using
GNU con gure scripts, even if written in C++, usually need a@mpiler for the con gure phase.

19.4.2. Java
If a program is written in Java, use the Java framework in pkgkhe package must include
..J../mk/java-vm.mk . This Make le fragment provides the following variables:

« USE_JAVAde nes if a build dependency on the JDK is addedJ#E_JAVAIs set to “run”, then there
is only a runtime dependency on the JDK. The default is “yesiich also adds a build dependency on
the JDK.

+ SetUSE_JAVA2to declare that a package needs a Java2 implementationuppersed values are
“yes”, “1.4”, and “1.5". "yes” accepts any Java2 implemdita, “1.4” insists on versions 1.4 or
above, and “1.5” only accepts versions 1.5 or above. Thislbkris not set by default.

« PKG_JAVA HOMIEB automatically set to the runtime location of the used Jaydementation
dependency. It may be used to $a¥A_HOMEO a good value if the program needs this variable to be
de ned.

100

Chapter 19. Making your package work

19.4.3. Packages containing perl scripts

If your package contains interpreted perl scripts, add"petthe USE_TOOLariable and set
REPLACE_PERIto ensure that the proper interpreter path isRERLACE_PERIshould contain a list of
scripts, relative t’€WRKSRQhat you want adjusted. Every occurrence fin/perl in a she-bang line
will be replaced with the full path to the perl executable.

If a particular version of perl is needed, set ##RL5_REQDvariable to the version number. The default
is “5.0".

SeeSection 19.6.6or information about handling perl modules.

19.4.4. Packages containing shell scripts

REPLACE_SHREPLACE_BASHREPLACE_CSHandREPLACE_KSHan be used to replace shell hash
bangs in les. Please use the appropriate one, pref&ERLACE_SHn case this shell is suf cient. Each
should contain a list of scripts, relative WeRKSRCQhat you want adjusted. Every occurrence of the
matching shell in a she-bang line will be replaced with tHegdath to the shell executable. When using
REPLACE_BASHdon't forget to addash to USE_TOOLS

19.4.5. Other programming languages

Currently, there is no special handling for other languagedgsrc. If a compiler package provides a
buildlink3.mk le, include that, otherwise just add a (build) dependennytioe appropriate compiler
package.

19.5. The build phase

The most common failures when building a package are that¢ satforms do not provide certain
header les, functions or libraries, or they provide thedtians in a library that the original package
author didn't know. To work around this, you can rewrite tbeixe code in most cases so that it does not
use the missing functions or provides a replacement fumctio

19.5.1. Compiling C and C++ code conditionally

If a package already comes with a GNU con gure script, thégred way to x the build failure is to
change the con gure script, not the code. In the other casmrscan utilize the C preprocessor, which
de nes certain macros depending on the operating systenhartiivare architecture it compiles for.
These macros can be queried using for exantipl@efined(__i386) . Almost every operating
system, hardware architecture and compiler has its ownankor example, if the macros GNUC__,
_i386__ and__NetBSD__ are all de ned, you know that you are using NetBSD on an i386
compatible CPU, and your compiler is GCC.

The list of the following macros for hardware and operatipsiem depends on the compiler that is used.
For example, if you want to conditionally compile code onéis, don'tuse _sun__, as the SunPro
compiler does not de ne it. Use sun instead.

101

Chapter 19. Making your package work

19.5.1.1. C preprocessor macros to identify the operating s ystem

To distinguish between 4.4 BSD-derived systems and theféise world, you should use the following
code.

#include <sys/param.h>

#if (defined(BSD) && BSD >= 199306)

/ = BSD-specific code goes here */
#else

/ * non-BSD-specific code goes here */
#endif

If this distinction is not ne enough, you can also test foe filollowing macros.

Cygwin __ CYGWIN__

DragonFly _ DragonFly___

FreeBSD __FreeBSD__

Haiku _ HAIKU__

Interix __INTERIX

IRIX __sgi (TODO: get a definite source for this)
Linux linux, __linux, _ linux__

Mac OS X __APPLE__

MirBSD __MirBSD__ (__OpenBSD___ is also defined)
Minix3 __minix

NetBSD _ NetBSD__

OpenBSD _ OpenBSD__

Solaris sun, __sun

19.5.1.2. C preprocessor macros to identify the hardware ar chitecture

i386 i386, _ i386, _ i386__
MIPS __mips
SPARC sparc, __sparc

19.5.1.3. C preprocessor macros to identify the compiler

GCC __GNUC__ (major version), _ GNUC_MINOR__
MIPSpro _COMPILER_VERSION (0x741 for MIPSpro 7.41)
SunPro __SUNPRO_C (0x570 for Sun C 5.7)

SunPro C++ _ SUNPRO_CC (0x580 for Sun C++ 5.8)

19.5.2. How to handle compiler bugs

Some source les trigger bugs in the compiler, based on coatlins of compiler version and
architecture and almost always relation to optimisatiandgpenabled. Common symptoms are gcc
internal errors or never nishing compiling a le.

102

Chapter 19. Making your package work
Typically, a workaround involves testing tivACHINE_ARCIand compiler version, disabling
optimisation for that combination of |IeMIACHINE_ARCiand compiler.

This used to be a big problem in the past, but is rarely neededas compiler technology has matured.
If you still need to add a compiler speci ¢ workaround, plea® so in the lehacks.mk and describe
the symptom and compiler version as detailed as possible.

19.5.3. Unde ned reference to “...”

This error message often means that a package did not linkharad library it needs. The following
functions are known to cause this error message over and over

Function Library Affected platforms

accept, bind, connect -Isocket Solaris

crypt -lcrypt DragonFly, NetBSD

dlopen, dlsym -IdI Linux

gethost* -Insl Solaris

inet_aton -Iresolv Solaris

nanosleep, sem_*, timer_* -Irt Solaris

openpty -lutil Linux

To x these linker errors, it is often suf cient to sayiBS. OperatingSystem += - foo to the package

Makefile and then sapmake clean; bmake

19.5.3.1. Special issue: The SunPro compiler

When you are using the SunPro compiler, there is anotheitplitys That compiler cannot handle the
following code:

extern int extern_func(int);

static inline int
inline_func(int x)

{ return extern_func(x);
}
int main(void)
{
return O;
}

It generates the code fatine_func even if that function is never used. This code then refers to
extern_func , which can usually not be resolved. To solve this problemganutry to tell the package
to disable inlining of functions.

103

Chapter 19. Making your package work

19.5.4. Running out of memory

Sometimes packages fail to build because the compiler niash operating system speci ¢ soft limit.
With the UNLIMIT_RESOURCE®ariable pkgsrc can be told to unlimit the resources. Culygethe
allowed values are any combination of “cputime”, “datasizenemorysize”, and “stacksize”. Setting
this variable is similar to running the shell builtiiimit command to raise the maximum data segment
size or maximum stack size of a process, respectively, iollaed limits.

19.6. The install phase

19.6.1. Creating needed directories

The BSD-compatiblénstall supplied with some operating systems cannot create moneotte
directory at a time. As such, you should cHIINSTALL_ *_DIR} like this:

${INSTALL_DATA_DIR} ${PREFIX}/dirl
${INSTALL_DATA_DIR} ${PREFIX}/dir2

You can also just appendiitl dir2 ”"to theINSTALLATION_DIRS variable, which will automatically
do the right thing.

19.6.2. Where to install documentation

In general, documentation should be installed #{fPREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME} (the latter includes the version number of the package).

Many modern packages using GNU autoconf allow to set thetirg where HTML documentation is
installed with the “--with-html-dir” option. Sometimesiag this ag is needed because otherwise the
documentation ends up ${PREFIX}/share/doc/htm| or other places.

An exception to the above is that library APl documentatieneyated with thextproc/gtk-doc

tools, for use by special browsers (devhelp) should be tefter default location, which is
${PREFIX}/share/gtk-doc . Such documentation can be recognized from les endingérhelp
or.devhelp2 . (ltis also acceptable to install such les $§iPREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME} ;the.devhelp + le must be directly in that directory then, no
additional subdirectory level is allowed in this case. Tikigsually achieved by using
“--with-html-dir=${PREFIX}/share/doc” ${PREFIX}/share/gtk-doc is preferred though.)

19.6.3. Installing highscore les

Certain packages, most of them in the games category,lingabre le that allows all users on the
system to record their highscores. In order for this to wtitk,binaries need to be installed setgid and
the score les owned by the appropriate group and/or owmaditionally the "games" user/group). Set
USE_GAMESGROLUtPyes to support this. The following variables, documeinedore detail in
mk/defaults/mk.conf , control this behaviouGAMEDATAMOPDEAMEDIRMODEBAMES _GROUP
GAMEMODEBAME_USEROther useful variables ar6AMEDIR_PERMSAMEDATA _PERM®&d
SETGID_GAMES_PERMS

104

Chapter 19. Making your package work

An example that illustrates some of the variables descrfiede isyames/moon-buggy .
OWN_DIRS_PERMS used to properly set directory permissions of the dimgyotdhere the score le is
savedREQD_FILES_PERMS$s used to create a dummy score lalfscore) with the proper permissions
andSPECIAL_PERMSs used to install setgid the game binary:

USE_GAMESGROUP= yes

BUILD DEFS+= VARBASE

OWN_DIRS_PERMS+= ${VARBASE}/games/moon-buggy ${GAMEDIR_PERMS}
REQD_FILES_PERMS+= /dev/null ${VARBASE}/games/moon-bu ggy/mbscore ${GAMEDATA_PERMS}
SPECIAL_PERMS+= ${PREFIX}/bin/moon-buggy ${SETGID_GAM ES_PERMS}

VariousINSTALL_» variables are also availabl&lSTALL_GAMEt0 install setgid game binaries,
INSTALL_GAME_DIRto install game directories that are needed to be accesssetdig games and
INSTALL_GAME_DATAO install score les.

A package should therefore never hard code le ownershigoess permissions but rely enPERMSas
described above or alternatively NSTALL_GAME INSTALL_GAME_DATANdINSTALL_GAME_DIRto
set these correctly.

19.6.4. Adding DESTDIR support to packages

DESTDIRsupport means that a package installs into a staging disectot the nal location of the les.
Then a binary package is created which can be used for mttallas usual. There are two ways: Either
the package must install as root (“destdir”) or the packageigstall as non-root user (“user-destdir”).

« PKG_DESTDIR_SUPPORTas to be set to “destdir” or “user-destdir”. By default
PKG_DESTDIR_SUPPORS set to “user-destdir” to help catching more potentialgaagng problems.
If bsd.prefs.mkis included in the Make |[®&KG_DESTDIR_SUPPORTeeds to be set before the
inclusion.

- Allinstallation operations have to be pre xed witfDESTDIR} .

- automake gets this DESTDIR mostly right automatically. Miaranual rules and pre/post-install often
are incorrect; x them.

« If les are installed with special owner/group uS€ECIAL_PERMS
- In general, packages should suppdkPRIVILEGEDt0 be able to use DESTDIR.

19.6.5. Packages with hardcoded paths to other interpreter S

Your package may also contain scripts with hardcoded pathther interpreters besides (or as well as)
perl. To correct the full pathname to the script interprgteu need to set the following de nitions in
your Makefile (we shall useclsh in this example):

REPLACE_INTERPRETER+= tcl

REPLACE.tcl.old= . */bin/tclsh
REPLACE.tcl.new= ${PREFIX}/bin/tclsh
REPLACE_FILES.tcl= # list of tcl scripts which need to be fix ed,

105

Chapter 19. Making your package work

relative to ${WRKSRC}, just as in REPLACE_PERL

Note: Before March 2006, these variables were called REPLACE* and REPLACE_FILES. *.

19.6.6. Packages installing perl modules

Make les of packages providing perl5 modules should ineltide Make le fragment
..J../lang/perl5/module.mk . It provides ado-con gure target for the standard perl con guration
for such modules as well as various hooks to tune this coraion. See comments in this le for details.

Perl5 modules will install into different places dependamgthe version of perl used during the build
process. To address this, pkgsrc will append lines t®Pth8T corresponding to the les listed in the
installed.packlist le generated by most perl5 modules. This is invoked by dagi
PERL5_PACKLISTto a space-separated list of packlist les relative®RL5_PACKLIST_DIR
(PERL5_INSTALLVENDORARGCHY default), e.g.:

PERL5_PACKLIST= auto/Pg/.packlist

The perl5 con g variablesstallarchlib , installscript , installvendorbin ,
installvendorscript , installvendorarch , installvendorlib , installvendormanldir ,
andinstallvendorman3dir represent those locations in which components of perl5 hesduay be

installed, provided as variable with uppercase and prewéH PERL5_, e.g.PERL5_INSTALLARCHLIB
and may be used by perl5 packages that don't have a packtisselvariables are also substituted for in
thePLIST as uppercase pre xed WithERL5_SUB .

19.6.7. Packages installing info les

Some packages install info les or use the “makeinfo” or tadkinfo” commandsINFO_FILES should
be de ned in the package Make le so thitSTALL andDEINSTALL scripts will be generated to handle
registration of the info les in the Info directory le. Theifistall-info” command used for the info les
registration is either provided by the system, or by a sp@ecigpose package automatically added as
dependency if needed.

PKGINFODIRIs the directory unde${PREFIX} where info les are primarily located®?KGINFODIR
defaults to “info” and can be overridden by the user.

The info les for the package should be listed in the packgkST ; however any split info les need
not be listed.

A package which needs the “makeinfo” command at build timstadd “makeinfo” tdJSE_TOOLSN

its Make le. If a minimum version of the “makeinfo” commansl heeded it should be noted with the
TEXINFO_REQDvariable in the packagdakefile . By default, a minimum version of 3.12 is required.
If the system does not providenaakeinfo command or if it does not match the required minimum, a
build dependency on thievel/gtexinfo package will be added automatically.

The build and installation process of the software provioiethe package should not use thstall-info
command as the registration of info les is the task of thekaa@eINSTALL script, and it must use the
appropriatanakeinfo command.

106

Chapter 19. Making your package work

To achieve this goal, the pkgsrc infrastructure createsrigieg scripts for thenstall-info andmakeinfo
commands in a directory listed early®ATH

The script overridingnstall-info has no effect except the logging of a message. The scriptidivery
makeinfo logs a message and according to the valueEXINFO_REQLeither runs the appropriate
makeinfo command or exit on error.

19.6.8. Packages installing man pages

All packages that install manual pages should install tha@mthe same directory, so that there is one
common place to look for them. In pkgsrc, this plac§{BREFIX}/${PKGMANDIR} , and this
expression should be used in packages. The defautfGMANDIRs “man’. Another often-used value
is “share/man "

Note: The support for a custom PKGMANDIRs far from complete.

ThePLIST les can just useman/ as the top level directory for the man page le entries, arekgsrc
framework will convert as needed. In all other places, theestPKGMANDIRNuUSst be used.

Packages that are con gured wiBNU_CONFIGUREet as “yes”, by default will use th&onfigure
--mandir switch to set where the man pages should be indtdllee path iGSNU_CONFIGURE_MANDIR
which defaults t&{PREFIX}/${PKGMANDIR} .

Packages that us&NU_CONFIGURBuUt do not use --mandir, can SEONFIGURE_HAS_MANDIR “no”.
Or if the ./configure script uses a non-standard use of --mandir, you can set
GNU_CONFIGURE_MAND#® needed.

SeeSection 13.50r information on installation of compressed manual pages

19.6.9. Packages installing GConf data les

If a package installschemas or .entries les, used by GConf, you need to take some extra steps to
make sure they get registered in the database:

1. Include../../devel/GConf/schemas.mk instead of itsuildlink3.mk le. This takes care of
rebuilding the GConf database at installation and deilagtah time, and tells the package where to
install GConf data les using some standard con gure arguoteelt also disallows any access to the
database directly from the package.

2. Ensure that the package installs.sshemas les under ${PREFIX}/share/gconf/schemas f
they get installed und&{PREFIX}/etc , you will need to manually patch the package.

3. Check the PLIST and remove any entries under the etc/gli@ttory, as they will be handled
automatically. SeS&ection 9.13or more information.

4. De ne theGCONF_SCHEMA@riable in youMakefile with a list of all.schemas les installed
by the package, if any. Names must not contain any directanithem.

5. De ne theGCONF_ENTRIEariable in youmMakefile with a list of all .entries les installed
by the package, if any. Names must not contain any directarithem.

107

Chapter 19. Making your package work

19.6.10. Packages installing scrollkeeper/rarian data | es

If a package installomf les, used by scrollkeeper/rarian, you need to take someaesteps to make
sure they get registered in the database:

1. Include../../mk/omf-scrollkeeper.mk instead of rarian'suildlink3.mk le. This takes
care of rebuilding the scrollkeeper database at instaiiaind deinstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries undetiltidata/scrollkeeper directory, as they
will be handled automatically.

3. Remove thahare/omf directory from the PLIST. It will be handled by rariaméke
print-PLIST does this automatically.)

19.6.11. Packages installing X11 fonts

If a package installs font les, you will need to rebuild thents database in the directory where they get
installed at installation and deinstallation time. This && automatically done by using the pkginstall
framework.

You can list the directories where fonts are installed inRBATS_DIRS.type Vvariables, whereype
can be one of “ttf”, “typel” or “x11". Also make sure that thatdbase Iefonts.dir is not listed in

the PLIST.

Note that you should not create new directories for fontsteiad use the standard ones to avoid that the
user needs to manually con gure his X server to nd them.

19.6.12. Packages installing GTK2 modules

If a package installs GTK2 immodules or loaders, you needke some extra steps to get them
registered in the GTK2 database properly:

1. Include../../x11/gtk2/modules.mk instead of itsuildlink3.mk le. This takes care of
rebuilding the database at installation and deinstalidtine.

2. SetGTK2_IMMODULES=YES$your package installs GTK2 immodules.

3. SetGTK2_LOADERS=YE# your package installs GTK2 loaders.

4. Patch the package to not touch any of the GTK2 databasaslgiiThese are:
- libdata/gtk-2.0/gdk-pixbuf.loaders
- libdata/gtk-2.0/gtk.immodules

5. Check thePLIST and remove any entries under titelata/gtk-2.0 directory, as they will be
handled automatically.

108

Chapter 19. Making your package work

19.6.13. Packages installing SGML or XML data

If a package installs SGML or XML data les that need to be stgied in system-wide catalogs (like
DTDs, sub-catalogs, etc.), you need to take some extra: steps

1. Include../../textproc/xmlcatmgr/catalogs.mk in your Makefile , which takes care of
registering those les in system-wide catalogs at instaltaand deinstallation time.

2. SetSGML_CATALOG® the full path of any SGML catalogs installed by the package
3. SetXML_CATALOGS the full path of any XML catalogs installed by the package.

4. SetSGML_ENTRIESo individual entries to be added to the SGML catalog. Theseecin groups of
three strings; see xmlcatmgr(1) for more information ($peatly, arguments recognized by the
‘add' action). Note that you will normally not use this vaboia.

5. SetXML_ENTRIESto individual entries to be added to the XML catalog. Thesae groups of
three strings; see xmlcatmgr(1) for more information ($pally, arguments recognized by the
'add' action). Note that you will normally not use this vauia.

19.6.14. Packages installing extensions to the MIME databa se

If a package provides extensions to the MIME database bgllimgg .xml les inside
${PREFIX}/share/mime/packages , you need to take some extra steps to ensure that the database
kept consistent with respect to these new les:

1. Include../../databases/shared-mime-info/mimedb.mk (avoid using thebuildlink3.mk
le from this same directory, which is reserved for inclusifstom otherbuildlink3.mk les). It
takes care of rebuilding the MIME database at installatioh d@einstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries undeshiage/mime directory,excepffor les saved
undershare/mime/packages . The former are handled automatically by the
update-mime-database program, but the latter are paadeggadent and must be removed by the
package that installed them in the rst place.

3. Remove anghare/mime/ * directories from the PLIST. They will be handled by the
shared-mime-info package.

19.6.15. Packages using intltool

If a package uses intltool during its build, aid¢ltool to theUSE_TOOLSwhich forces it to use the
intltool package provided by pkgsrc, instead of the one lahdith the distribution le.

This tracks intltool's build-time dependencies and useddlest available version; this way, the package
bene ts of any bug xes that may have appeared since it waesassd.

19.6.16. Packages installing startup scripts

If a package contains a rc.d script, it won't be copied in®startup directory by default, but you can
enable it, by adding the optid?/KG_RCD_SCRIPTS=YE#® mk.conf . This option will copy the scripts

109

Chapter 19. Making your package work

into /etc/rc.d when a package is installed, and it will automatically remthe scripts when the
package is deinstalled.

19.6.17. Packages installing TeX modules

If a package installs TeX packages into the texmf treelsie database of the tree needs to be updated.

Note: Except the main TeX packages such as kpathsea, packages should install les into
${PREFIX}/share/texmf-dist , hot ${PREFIX}/share/texmf

1. Include../../print/kpathsea/texmf.mk . This takes care of rebuilding theR database at
installation and deinstallation time.

2. If your package installs les into a texmf tree other thhae bne at
${PREFIX}/share/texmf-dist , SStTEX_TEXMF_DIRSo the list of all texmf trees that need
database update.

If your package also installs font map les that need to basteged usingipdmap, include
..[../print/tex-tetex/map.mk and sefTEX_MAP_FILESand/orTEX_MIXEDMAP_FILESto
the list of all such font map les. Theapdmap will be run automatically at
installation/deinstallation to enable/disable font mégs for TeX output drivers.

3. Make sure that none &f-R databases are includedmnlST , as they will be removed only by the
kpathsea package.

19.6.18. Packages supporting running binaries in emulatio n

There are some packages that provide libraries and exéesifalb running binaries from a one operating
system on a different one (if the latter supports it). Onexgxe is running Linux binaries on NetBSD.

Thepkgtools/rom2pkg helps in extracting and packaging Linux rpm packages.

The CHECK_SHLIBScan be set to no to avoid tllmeck-shlibstarget, which tests if all libraries for each
installed executable can be found by the dynamic linkercé&the standard dynamic linker is run, this
fails for emulation packages, because the libraries useldéogmulation are not in the standard
directories.

19.6.19. Packages installing hicolor theme icons

If a package installs images under #tare/icons/hicolor and/or updates the
shareficons/hicolor/icon-theme.cache database, you need to take some extra steps to make
sure that the shared theme directory is handled approlyratd that the cache database is rebuilt:

1. Include../../graphics/hicolor-icon-theme/buildlink3.mk

2. Check the°LIST and remove the entry that refers to the theme cache.

110

Chapter 19. Making your package work
3. Ensure that the PLIST does not remove the shared icortalires from the
shareficons/hicolor hierarchy because they will be handled automatically.

The best way to verify that the PLIST is correct with respedbi last two points is to regenerate it
usingmake print-PLIST .

19.6.20. Packages installing desktop les

If a package installsiesktop les undershare/applications and these include MIME information
(MimeType key), you need to take extra steps to ensure tkegtafe registered into the MIME database:

1. Include../../sysutils/desktop-file-utils/desktopdb.mk

2. Check the PLIST and remove the entry that refers to the
share/applications/mimeinfo.cache le. It will be handled automatically.

The best way to verify that the PLIST is correct with respedhi last point is to regenerate it using
make print-PLIST .

19.7. Marking packages as having problems

In some cases one does not have the time to solve a problentiiatiely. In this case, one can plainly
mark a package as broken. For this, one just sets the vaB&a&ENo the reason why the package is
broken (similar to th&RESTRICTEDvariable). A user trying to build the package will immedigtiee
shown this message, and the build will not be even tried.

BROKENyackages are removed from pkgsrc in irregular intervals.

111

Chapter 20.
Debugging

To check out all the gotchas when building a package, hertharsteps that | do in order to get a
package working. Please note this is basically the same aswds explained in the previous sections,
only with some debugging aids.

Be sure to sePKG_DEVELOPER=ye# mk.conf .
Install pkgtools/url2pkg , create a directory for a new package, change into it, themn@pkg :

% mkdir /usr/pkgsrc/ category / examplepkg
% cd /usr/pkgsrc/ category / examplepkg
% url2pkg http://www.example.com/path/to/distfile.tar. gz

Edit theMakefile as requested.
Fill in the DESCRIe
Runmake con gure

Add any dependencies glimpsed from documentation and thguee step to the package's
Makefile

Make the package compile, doing multiple rounds of

% make

% pkgvi ${WRKSRC}/someffile/that/does/not/compile
% mkpatches

% patchdiff

% mv ${WRKDIR}/.newpatches/ * patches

% make mps

% make clean

Doing this step as non-root user will ensure that no les acelined that shouldn't be, especially
during the build phasenkpatches patchdiff andpkgvi are from thepkgtools/pkgdiff package.

Look at theMakefile , x if necessary; se&ection 11.1

Generate ®LIST :

make install

make print-PLIST >PLIST
make deinstall

make install

make deinstall

H* OH H R

You usually need to bmot to do this. Look if there are any les left:
make print-PLIST
If this reveals any les that are missing RLIST , add them.

Now that thePLIST is OK, install the package again and make a binary package:

112

Chapter 20. Debugging
make reinstall
make package
Delete the installed package:
pkg_delete examplepkg
Repeat the abowmake print-PLIST command, which shouldn't nd anything now:
make print-PLIST
Reinstall the binary package:
pkg_add ../ examplepkg .tgz
Play with it. Make sure everything works.
Runpkglint from pkgtools/pkglint ,and xthe problems it reports:
pkglint

Submit (or commit, if you have cvs access); &apter 21

113

Chapter 21.
Submitting and Committing

21.1. Submitting binary packages

Our policy is that we accept binaries only from pkgsrc depels to guarantee that the packages don't
contain any trojan horses etc. This is not to annoy anyonesdltlier to protect our users! You're still free
to put up your home-made binary packages and tell the workt@to get them. NetBSD developers
doing bulk builds and wanting to upload them pleaseGeapter 7

21.2. Submitting source packages (for non-NetBSD-develop ers)

First, check that your package is complete, compiles anslwail; seeChapter 2Gand the rest of this
document. Next, generate an uuencoded gzipped tar(1yarttat contains all les that make up the
package. Finally, send this package to the pkgsrc bug trgakistem, either with the send-pr(1)
command, or if you don't have that, go to the web page httpaliNetBSD.org/support/send-pr.html,
which contains some instructions and a link to a form wheregen submit packages. The
sysutils/gtk-send-pr package is also available as a substitute for either of tbeeatwo tools.

In the form of the problem report, the category should be “pite synopsis should include the package
name and version number, and the description eld shouldatom short description of your package
(contents of the COMMENT variable or DESCR le are OK). Thesmgoded package data should go
into the “ x” eld.

If you want to submit several packages, please send a sefpRefior each one, it's easier for us to track
things that way.

Alternatively, you can also import new packages into pkggife (“pkgsrc work-in-progress”); see the
homepage at http://pkgsrc.org/wip/ for details.

21.3. General notes when adding, updating, or removing pack ages

Please note all package additions, updates, moves, andaéniopkgsrc/doc/CHANGES- YYYY. It's
very important to keep this le up to date and conforming te #xisting format, because it will be used
by scripts to automatically update pages on www.NetBSD(lottp://www.NetBSD.org/) and other sites.
Additionally, check thepkgsrc/doc/TODO le and remove the entry for the package you updated or
removed, in case it was mentioned there.

When thePKGREVISIONof a package is bumped, the change should appear in
pkgsrc/doc/CHANGES- YYYYifit is security related or otherwise relevant. Mass bunfyad tesult from
a dependency being updated should not be mentioned. Irhelt oases it's the developer's decision.

114

Chapter 21. Submitting and Committing

There is a make target that helps in creating prap&sNGESYYYY entries:make changes-entrylt uses
the optionalCTYPEandNETBSD_LOGIN_NAM¥ariables. The general usage is to rst make sure that
your CHANGES¥YYY le is up-to-date (to avoid having to resolve con icts laten) and then ted to the
package directory. For package updateake changes-entryis enough. For new packages, or package
moves or removals, set tleTYPEvariable on the command line to "Added", "Moved", or "Remdize

You can seNETBSD_LOGIN_NAMig mk.conf if your local login name is not the same as your NetBSD
login name. The target also automatically removes possiiblting entries for the package in theDo

le. Don't forget to commit the changes, e.g. by usimg@ke commit-changes-entryIf you are not

using a checkout directly from cvs.NetBSD.org, but e.g.caleaopy of the repository, you can set
USE_NETBSD_REPO=yes. This makes the cvs commands use theepasitory.

21.4. Commit Messages

For several years, there have been mirrors of pkgsrc inlfgsisiand hg. Standard practise when using
these tools is to make the rst line of a commit message faomcdis a summary that can be read without
the rest, such as is commonly done with "git log --onelingl. this reason, we have the following
guidelines for pkgsrc commit messages:

- Start the commit message with a line that explains the bigpdn 65 characters or less. When a
commit is for one package, include the name of the packageupaates, include the version to which
it is updated.

- Leave the next line empty.

- Then come the details for the commit (changes in that packagson for a change) and any relevant
PRs. Wrap this section.

Here is an example:

libxslt: update to 1.0.30

Changes since 1.0.29:

Here is another example:

mk/bsd.pkg.mk: enable SSP by default on NetBSD

(rationale)

Commit messages are nal: no “cvs admin” is allowed on thegskgepository to change commit
messages.

115

Chapter 21. Submitting and Committing

21.5. Committing: Adding a package to CVS

This section is only of interest for pkgsrc developers witfitavaccess to the pkgsrc repository.

When the package is nished, “cvs add” the les. Start by amigihe directory and then les in the
directory. Don't forget to add the new package to the catggaonakefile . Make sure you don't forget
any les; you can check by running “cvs status”. An example:

cd .../pkgsrc/category

cvs add pkgname

cd pkgname

cvs add DESCR Makefile PLIST distinfo buildlink3.mk patche s
cvs add patches/p =

cvs status | less

cvs commit

cd ..

vi Makefile # add SUBDIRS+=pkgname line
cvs commit Makefile

cd pkgname

make CTYPE=Added commit-changes-entry

R A R A I R R <

The commit message of the initial import should include pathe DESCRIe, so people reading the
mailing lists know what the package is/does.

Also mention the new package pigsrc/doc/CHANGES-20xx

Previously, “cvs import” was suggested, but it was muchezasiget wrong than “cvs add”.

21.6. Updating a package to a newer version

Please always put a concise, appropriate and relevant synaofithie changes between old and new
versions into the commit log when updating a package. Thergaious reasons for this:

- A URL is volatile, and can change over time. It may go away cletey or its information may be
overwritten by newer information.

« Having the change information between old and new versioosii CVS repository is very useful for
people who use either cvs or anoncvs.

« Having the change information between old and new versioosii CVS repository is very useful for
people who read the pkgsrc-changes mailing list, so thatdhe make tactical decisions about when
to upgrade the package.

Please also recognize that, just because a new version ckagmhas been released, it should not
automatically be upgraded in the CVS repository. We preféret conservative in the packages that are
included in pkgsrc - development or beta packages are nibt tha best thing for most places in which
pkgsrc is used. Please use your judgement about what shoittiogpkgsrc, and bear in mind that
stability is to be preferred above new and possibly untefstailires.

116

Chapter 21. Submitting and Committing

21.7. Renaming a package in pkgsrc

Renaming packages is not recommended.

When renaming packages, be sure to x any references to ofeteria other Make les, options, buildlink
les, etc.

Also When renaming a package, please deStPERSEDE® the package name and dewey version
pattern(s) of the previous package name. This may be repgatmultiple renames. The new package
would be an exact replacement.

Note that “successor” in the CHANGE®¥YY le doesn't necessarily mean thatstupersedesas that
successor may not be an exact replacement but is a suggesttbe replaced functionality.

21.8. Moving a package in pkgsrc

It is preferred that packages are not renamed or moved, baeiled please follow these steps.

1. Make a copy of the directory somewhere else.

2. Remove all CVS dirs.
Alternatively to the rst two steps you can also do:
% cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsr c/category/package
and use that for further work.

3. Fix CATEGORIESand anyDEPEND®aths that just did “../package” instead of
“..I..Icategory/package”.

4. In the modi ed package's Make le, consider settiRREV_PKGPATItD the previous
category/package pathname. THREV_PKGPATIan be used by tools for doing an update using
pkgsrc building; for example, it can search the pkg_sumi@database foPREV_PKGPATKIf no
SUPERSEDERand then use the corresponding neMGPATHor that moved package. Note that it
may have multiple matches, so the tool should also check@PKIEBASE00. ThePREV_PKGPATH
probably has no value unleS&PERSEDE® not set, i.ePKGBASEtays the same.

5. cvs import the modi ed package in the new place.
6. Check if any package depends on it:

% cd /usr/pkgsrc
% grep /package */=*/Makefile * /+/buildlink *

7. Fix paths in packages from step 5 to point to new location.
8. cvs rm (-f) the package at the old location.
9. Remove fronoldcategory/Makefile
10. Add tonewcategory/Makefile
11. Commit the changed and removed les:
% cvs commit oldcategory/package oldcategory/Makefile new category/Makefile

(and any packages from step 5, of course).

117

Chapter 22.
Frequently Asked Questions

This section contains the answers to questions that mag &tien you are writing a package. If you
don't nd your question answered here, rst have a look in titeer chapters, and if you still don't have
the answer, ask on thekgsrc-users mailing list.

1. What is the difference betwe®mAKEFLAGSMAKEFLAGSandMAKE_FLAGS

MAKEFLAGSre the ags passed to the pkgsrc-internal invocations datg, whileMAKE_FLAGSre
the ags that are passed to tMAKE_PROGRANhen building the package. [FIXME: What is
.MAKEFLAGS for?]

2.What is the difference betwe@&mAKE GMAKEAaNdMAKE_PROGRAM

MAKEis the path to the make(1) program that is used in the pkgémsimucture GMAKEHS the path to
GNU Make, but you need to s&ySE_TOOLS+=gmakédo use thatMAKE_PROGRABMIthe path to the
Make program that is used for building the package.

3. What is the difference betwe&C PKG_CGNdPKGSRC_COMPILER

CCis the path to the real C compiler, which can be con gured leygkgsrc uselPKG_Cds the path to
the compiler wrappePKGSRC_COMPILER nota path to a compiler, but the type of compiler that
should be used. Seek/compiler.mk for more information about the latter variable.

4. What is the difference betwe@UILDLINK_LDFLAGS, BUILDLINK_LDADD andBUILDLINK_LIBS ?

[FIXME]

5. Why doesmake show-var VARNAME=BUILDLINK_PREFIX. foo say it's empty?

For optimization reasons, some variables are only availathe “wrapper” phase and later. To
“simulate” the wrapper phase, appdPG_PHASE=wrapper to the above command.

6. What doess{MASTER_SITE_SOURCEFORGE:=package/} mean? | don't understand the inside it.

The:= is not really an assignment operator, although it looksitikistead, it is a degenerate form of
${LIST: old_string =new_string }, which is documented in the make(1) man page and which is
commonly used in the for®{SRCS:.c=.0} .Inthe case oMASTER_SITE *, old_string is the
empty string anchew_string is package/ . That's where the and the= fall together.

7. Which mailing lists are there for package developers?

tech-pkg (http://www.NetBSD.org/mailinglists/indeinfi#tech-pkg)

This is a list for technical discussions related to pkgsretigpment, e.g. soliciting feedback for
changes to pkgsrc infrastructure, proposed new featuuestigns related to porting pkgsrc to a

118

Chapter 22. Frequently Asked Questions

new platform, advice for maintaining a package, patchesaffiact many packages, help requests
moved from pkgsrc-users when an infrastructure bug is foetod

pkgsrc-bugs (http://www.NetBSD.org/mailinglists/indietml#pkgsrc-bugs)

All bug reports in category "pkg" sent with send-pr(1) apgesre. Please do not report your bugs
here directly; use one of the other mailing lists.

8. Where is the pkgsrc documentation?

There are many places where you can nd documentation ab@srp:

The pkgsrc guide (this document) is a collection of chapteasexplain large parts of pkgsrc, but
some chapters tend to be outdated. Which ones they are ischsag.

On the mailing list archives (see http://mail-index.NeB&rg/), you can nd discussions about
certain features, announcements of new parts of the pkgseastructure and sometimes even
announcements that a certain feature has been marked dsteb$be bene t here is that each
message has a date appended to it.

Many of the les in themk/ directory start with a comment that describes the purpo$igeoie and
how it can be used by the pkgsrc user and package authors.sfm@g to nd this documentation is
to runbmake help.

The CVS log messages are a rich source of information, byttérel to be highly abbreviated,
especially for actions that occur often. Some contain ailéetdescription of what has changed, but
they are geared towards the other pkgsrc developers, natdsvan average pkgsrc user. They also
only documenthangesso if you don't know what has been before, these messagesatde worth
too much to you.

Some parts of pkgsrc are only “implicitly documented”, tisathe documentation exists only in the
mind of the developer who wrote the code. To get this inforomatuse thevs annotatecommand to
see who has written it and ask on teeh-pkg mailing list, so that others can nd your questions
later (see above). To be sure that the developer in chards tika mail, you may CC him or her.

9.1 have a little time to kill. What shall | do?

This is not really an FAQ yet, but here's the answer anyway.

Runpkg_chk -N (from thepkgtools/pkg_chk package). It will tell you about newer versions of
installed packages that are available, but not yet updatpgsrc.

Browsepkgsrc/doc/TODO — it contains a list of suggested new packages and a list ahcles and
enhancements for pkgsrc that would be nice to have.

Review packages for which review was requested on the tkgh-p
(http://www.NetBSD.org/mailinglists/index.html#tegkg) mailing list.

119

Chapter 23.
GNOME packaging and porting

Quoting GNOME's web site (http://www.gnome.org/):

The GNOME project provides two things: The GNOME desktopiramment, an intuitive and attractive
desktop for users, and the GNOME development platform, gemsive framework for building applications
that integrate into the rest of the desktop.

pkgsrc provides a seamless way to automatically build astdlira complete GNOME environment
under many different platformgVe can say with con dence that pkgsrc is one of the most ack@n
build and packaging systems for GNOME due to its includetrietgies buildlink3, the wrappers and
tools framework and automatic con guration le managememts of efforts are put into achieving a
completely clean deinstallation of installed software poments.

Given that pkgsrc is NetBSD (http://www.NetBSD.org/)'saidl packaging system, the above also
means that great efforts are put into making GNOME work utitisroperating system. Recently,
DragonFly BSD (http://www.dragon ybsd.org/) also adoghfekgsrc as its preferred packaging system,
contributing lots of portability xes to make GNOME build drinstall under it.

This chapter is aimed at pkgsrc developers and other peajgiested in helping our GNOME porting
and packaging efforts. It provides instructions on how tmawge the existing packages and some
important information regarding their internals.

We need your help!: Should you have some spare cycles to devote to NetBSD, pkgsrc and GNOME
and are willing to learn new exciting stuff, please jump straight to the pending work
(http:/lwww.NetBSD.org/contrib/projects.html#gnome) list! There is still a long way to go to get a
fully-functional GNOME desktop under NetBSD and we need your help to achieve it!

23.1. Meta packages

pkgsrc includes three GNOME-related meta packages:

« meta-pkgs/gnome-base : Provides the core GNOME desktop environment. It only idefsithe
necessary bits to get it to boot correctly, although it mak important functionality for daily
operation. The idea behind this package is to let end usddstheir own con gurations on top of this
one, rstinstalling this meta package to achieve a fundi@etup and then adding individual
applications.

- meta-pkgs/gnome : Provides a complete installation of the GNOME platform dedktop as de ned
by the GNOME project; this is based on the components diggtin the
platform/x.y/x.y.z/sources anddesktop/x.y/x.y.z/sources directories of the of cial
FTP server. Developer-only tools found in those directaiee not installed unless required by some
other component to work properly. Similarly, packages ftbmbindings set

120

Chapter 23. GNOME packaging and porting

(bindings/x.y/x.y.z/sources) are not pulled in unless required as a dependency for amuseid-
component. This package "extendstta-pkgs/gnome-base

- meta-pkgs/gnome-devel . Installs all the tools required to build a GNOME componehew
fetched from the CVS repository. These are required to Eathiogen.shscripts work appropriately.

In all these packages, tlEEPENDSInes are sorted in a way that eases updates: a package mayddep
on other packages listed before it but not on any listed #ftkris very important to keep this order to
ease updates sodo not change it to alphabetical sorting!

23.2. Packaging a GNOME application

Almost all GNOME applications are written in C and use a comrset of tools as their build system.
Things get different with the new bindings to other langusa@eich as Python), but the following will
give you a general idea on the minimum required tools:

- Almost all GNOME applications use the GNU Autotools as theiild system. As a general rule you
will need to tell this to your package:

GNU_CONFIGURE=yes
USE_LIBTOOL=yes
USE_TOOLS+=gmake

- If the package uses pkg-con g to detect dependencies, asltbibl to the list of required utilities:
USE_TOOLS+=pkg-config

Also usepkgtools/verifypc at the end of the build process to ensure that you did not miss t
specify any dependency in your package and that the versgnrements are all correct.

- If the package uses intltool, be sure to @atiool to theUSE_TOOLS0 handle dependencies and
to force the package to use the latest available version.

- If the package uses gtk-doc (a documentation generatibity)ytilo notadd a dependency on it. The
tool is rather big and the dist le should come with pregeedalocumentation anyway; if it does not,
it is a bug that you ought to report. For such packages youlglisable gtk-doc (unless it is the
default):

CONFIGURE_ARGS+=--disable-gtk-doc

The default location of installed HTML lesshare/gtk-doc/<package-name>)is correct and
should not be changed unless the package insists on ingt#iiem somewhere else. Otherwise
programs aslevhelpwill not be able to open them. You can do that with an entry lsinto:

CONFIGURE_ARGS+=--with-html-dir=${PREFIX}/share/gtk -docl/...

GNOME uses multiplshareddirectories and les under the installation pre x to maimalatabases. In
this context, shared means that those exact same directarit les are used among several different
packages, leading to con icts in tH&LIST . pkgsrc currently includes functionality to handle the mos
common cases, so you have to forget about u@ngexec ${RMDIR} lines in your le lists and
omitting shared les from them. If you nd yourself doing tlse,your package is most likely incorrect

The following table lists the common situations that resulising shared directories or les. For each of
them, the appropriate solution is given. After applying $bé&ution be sure teegenerate the package's
le list with make print-PLIST and ensure it is correct.

121

Chapter 23. GNOME packaging and porting

Table 23-1. PLIST handling for GNOME packages

If the package... Then...
Installs OMF les undeshare/omf . SeeSection 19.6.10
Installs icons under thshare/icons/hicolor SeeSection 19.6.19

hierarchy or updates
share/icons/hicolor/icon-theme.cache

Installs les undershare/mime/packages . SeeSection 19.6.14
Installs.desktop les under SeeSection 19.6.20
share/applications and these include MIME

information.

23.3. Updating GNOME to a newer version

When seeing GNOME as a whole, there are two kinds of updates:

Major update

Given that there is still a very long way for GNOME 3 (if it ev@ppears), we consider a major
update one that goes froneaX version to &.Y one, whereY is even and greater thata These are
hard to achieve because they introduce lots of changes tothh@onents' code and almost all
GNOME dist les are updated to newer versions. Some of themesvan break APl and ABI
compatibility with the previous major version series. Agault, the update needs to be done all at
once to minimize breakage.

A major update typically consists of around 80 package g=dand the addition of some new ones.

Minor update

We consider a minor update one that goes frofnaaX version to &.A.Y one wherey is greater
thanX. These are easy to achieve because they do not update all &OMponents, can be done
in an incremental way and do not break API nor ABI compatiili

A minor update typically consists of around 50 package wsjatithough the numbers here may
vary a lot.

In order to update the GNOME components in pkgsrc to a newestalease (either major or minor), the
following steps should be followed:

1. Get a list of all the tarballs that form the new release bggithe following commands. These will
leave the full list of the components' dist les into thist.txt le:

% echo Is " =.tar.bz2" | \
ftp -V ftp://ftp.gnome.org/pub/gnome/platform/x.y/x.y .z/sources/ | \
awk ‘{ print $9 } >list.txt

% echo Is " =.tar.bz2" | \
ftp -V ftp://ftp.gnome.org/pub/gnome/desktop/x.y/x.y. z/sources/ | \
awk '{ print $9 } >>list.txt

122

Chapter 23. GNOME packaging and porting

2. Open each meta packagmetakefile and bump their version to the release you are updating them
to. The three meta packages should be always consistentevigfoning. Obviously remove any
PKGREVISIONs that might be in them.

3. For each meta package, update alDEBPENDdines to match the latest versions as shown by the
above commands. Dot list any newer version (even if found in the FTP) because tham
packages are supposed to list the exact versions that fopecas GNOME release. Exceptions are
permitted here if a newer version solves a serious issuesinvbrall desktop experience; these
typically come in the form of a revision bump in pkgsrc, nohigwer versions from the developers.

Packages not listed in thiet.txt le should be updated to the latest version available (ifrfdu
in pkgsrc). This is the case, for example, of the dependsmeighe GNU Autotools in the
meta-pkgs/gnome-devel meta package.

4. Generate a patch from the modi ed meta packages and extieatist of "new" lines. This will
provide you an outline on what packages need to be updatddjsrpand in what order:

% cvs diff -u gnome-devel gnome-base gnome | grep '“+D' >todo. txt

5. For major desktop updates it is recommended to zap allipstalled packages and start over from
scratch at this point.

6. Now comes the longest step by far: iterate over the contefnbdo.txt and update the packages
listed in it in order. For major desktop updates none of thsbsild be committed until the entire set
is completed because there are chances of breaking nojpgeted packages.

7. Once the packages are up to date and working, commit théme toee one by one with appropriate
log messages. At the end, commit the three meta packageaspatad all the corresponding changes
to thedoc/CHANGES-<YEAR>andpkgsrc/doc/TODO les.

23.4. Patching guidelines

GNOME is a very big component in pkgsrc which approaches Hiigges. Please, it is very important
that you always, alwayslwaysfeed back any portability xes you do to a GNOME package to the
mainstream developers (sBection 11.3.p This is the only way to get their attention on portability
issues and to ensure that future versions can be built etitediox on NetBSD. The less custom patches
in pkgsrc, the easier further updates are. Those develapehsrge of issuing major GNOME updates
will be grateful if you do that.

The most common places to report bugs are the GNOME's Bag{ittp://bugzilla.gnome.org/) and the
freedesktop.org's Bugzilla (http://bugzilla.freedegiiorg/). Not all components use these to track bugs,
but most of them do. Do not be short on your reports: alwaysigeodetailed explanations of the current
failure, how it can be improved to achieve maximum port&pdind, if at all possible, provide a patch
against CVS head. The more verbose you are, the higher chahgeur patch being accepted.

Also, please avoid using preprocessor magic to x portapiisues. While the FreeBSD GNOME
people are doing a great job in porting GNOME to their opaasiystem, the of cial GNOME sources
are now plagued by conditionals that check foFreeBSD__ and similar macros. This hurts portability.
Please see our patching guidelin8g¢tion 11.3 4for more details.

123

lll. The pkgsrc infrastructure
Internals

This part of the guide deals with everything from the infrasture that is behind the interfaces described
in the developer's guide. A casual package maintainer shootl need anything from this part.

Chapter 24.
Design of the pkgsrc
Infrastructure

The pkgsrc infrastructure consists of many small Make kgiments. Each such fragment needs a
properly speci ed interface. This chapter explains howtsan interface looks like.

24.1. The meaning of variable de nitions

Whenever a variable is de ned in the pkgsrc infrastructthre location and the way of de nition provide
much information about the intended use of that variablaii@hally, more documentation may be
found in a header comment or in this pkgsrc guide.

A special le is mk/defaults/mk.conf , which lists all variables that are intended to be user-éd.n
They are either de ned using ttee= operator or they are left unde ned because de ning them to
anything would effectively mean “yes”. All these variabteay be overridden by the pkgsrc user in the
MAKECONFHe.

Outside this le, the following conventions apply: Vari&sl that are de ned using ti#e= operator may
be overridden by a package.

Variables that are de ned using tleoperator may be used read-only at run-time.

Variables whose name starts with an underscore must notdessex outside the pkgsrc infrastructure at
all. They may change without further notice.

Note: These conventions are currently not applied consistently to the complete pkgsrc infrastructure.

24.2. Avoiding problems before they arise

All variables that contain lists of things should defaulb&ing empty. Two examples that do not follow
this rule areUSE_LANGUAGESNADISTFILES . These variables cannot simply be modi ed using the
operator in packagdakefile s (or other les included by them), since there is no guaramteether the
variable is already set or not, and what its value is. In tlee @DISTFILES , the packages “know” the
default value and just de ne it as in the following example.

DISTFILES= ${DISTNAME}${EXTRACT_SUFX} additional-file s.tar.gz

125

Chapter 24. Design of the pkgsrc infrastructure

Because of the selection of this default value, the same\agdpears in many package Make les.
Similarly for USE_LANGUAGE$ut in this case the default values() is so short that it doesn't stand
out. Nevertheless it is mentioned in many les.

24.3. Variable evaluation

24.3.1. At load time

Variable evaluation takes place either at load time or atims depending on the context in which they
occur. The contexts where variables are evaluated at loadre:

- Theright hand side of the: and!= operators,
- Make directives likeif or.for
- Dependency lines.

A special exception are references to the iteration vaggbf.for loops, which are expanded inline, no
matter in which context they appear.

As the values of variables may change during load time, cais tve taken not to evaluate them by
accident. Typical examples for variables that should nazduated at load time alEEPENDSNd
CONFIGURE_ARGSH0 make the effect more clear, here is an example:

CONFIGURE_ARGS= # none
CFLAGS= -0
CONFIGURE_ARGS+= CFLAGS=${CFLAGS:Q}
CONFIGURE_ARGS:= ${CONFIGURE_ARGS}
CFLAGS+= -Wall

This code shows how the use of tire operator can quickly lead to unexpected results. The rst
paragraph is fairly common code. The second paragraphagesltheCONFIGURE_ARG®ariable,

which results inCFLAGS=-Q In the third paragraph, th&vall is appended to theFLAGS but this

addition will not appear ICONFIGURE_ARG%$n actual code, the three paragraphs from above typically
occur in completely unrelated les.

24.3.2. At runtime

After all the les have been loaded, the values of the vagatdannot be changed anymore. Variables
that are used in the shell commands are expanded at this point

126

Chapter 24. Design of the pkgsrc infrastructure

24.4. How can variables be speci ed?

There are many ways in which the de nition and use of a vaaalain be restricted in order to detect
bugs and violations of the (mostly unwritten) policies. Ackage can be checked wiphkglint -wall
to see whether it meets these rules.

24.5. Designing interfaces for Make le fragments

Most of the.mk les fall into one of the following classes. Cases where afddls into more than one
class should be avoided as it often leads to subtle bugs.

24.5.1. Procedures with parameters

In a traditional imperative programming language some efittk les could be described as

procedures. They take some input parameters and—aftesioal—provide a result in output

parameters. Since all variableshitakefile s have global scope care must be taken not to use parameter
names that have already another meaning. For exaPi@&NAMIS a bad choice for a parameter name.

Procedures are completely evaluated at preprocessingTima¢ is, when calling a procedure all input
parameters must be completely resolvable. For exargai8FIGURE_ARGshould never be an input
parameter since it is very likely that further text will bedadl after calling the procedure, which would
effectively apply the procedure to only a part of the vaaBlso, references to other variables will be
modi ed after calling the procedure.

A procedure can declare its output parameters either esbéeifior use in preprocessing directives or as
only available at runtime. The latter alternative is forightes that contain references to other runtime
variables.

Procedures shall be written such that it is possible to helltrocedure more than once. That is, the le
must not contain multiple-inclusion guards.

Examples for procedures até/bsd.options.mk andmk/buildlink3/bsd.builtin.mk .To
express that the parameters are evaluated at load timeshieyd be assigned using the operator,
which should be used only for this purpose.

24.5.2. Actions taken on behalf of parameters

Action les take some input parameters and may de ne runtiragables. They shall not de ne loadtime
variables. There are action les that are included impldity the pkgsrc infrastructure, while other must
be included explicitly.

An example for action les ignk/subst.mk

24.6. The order in which les are loaded

Packageviakefile s usually consist of a set of variable de nitions, and indulde le
..I..Imk/bsd.pkg.mk in the very last line. Before that, they may also include masiother .mk
les if they need to query the availability of certain feaggrlike the type of compiler or the X11

127

Chapter 24. Design of the pkgsrc infrastructure

implementation. Due to the heavy use of preprocessor diesdike.if and.for , the orderin which
the les are loaded matters.

This section describes at which point the various les asalked and gives reasons for that order.

24.6.1. The order in bsd.prefs.mk

The very rst action inbsd.prefs.mk is to de ne some essential variables liR@SYSOS_VERSION
andMACHINE_ARCH

Then, the user settings are loaded from the le speci eM#KECONRvhich is usuallymk.conf . After
that, those variables that have not been overridden by #reaus loaded frormk/defaults/mk.conf

After the user settings, the system settings and platfottinge are loaded, which may override the user
settings.

Then, the tool de nitions are loaded. The tool wrappers areyet in effect. This only happens when
building a package, so the proper variables must be useshihstf the direct tool names.

As the last steps, some essential variables from the wrapppkthe package system avor are loaded, as
well as the variables that have been cached in earlier plodsgsackage build.

24.6.2. The order in bsd.pkg.mk
First, bsd.prefs.mk is loaded.

Then, the various-vars.mk les are loaded, which Il default values for those variablthat have not
been de ned by the package. These variables may later beawsedn unrelated les.

Then, the lebsd.pkg.error.mk provides the targedrror-check that is added as a special
dependency to all other targets that 0§8@ AYED_ERROR_M®GDELAYED_WARNING_MSG

Then, the package-speci ¢ hacks frdracks.mk are included.

Then, various other les follow. Most of them don't have angpEndencies on what they need to have
included before or after them, though some do.

The code to checRKG_FAIL_REASOMNAPKG_SKIP_REASONs then executed, which restricts the use
of these variables to all the les that have been includedtfAppearances in later les will be silently
ignored.

Then, the les for the main targets are included, in the oafdater execution, though the actual order
should not matter.

At last, some more les are included that don't set any ingéirgy variables but rather just de ne make
targets to be executed.

128

Chapter 25.
Regression tests

The pkgsrc infrastructure consists of a large codebasethamd are many corners where every little bit
of a le is well thought out, making pkgsrc likely to fail as @o as anything is changed near those parts.
To prevent most changes from breaking anything, a suitegséssion tests should go along with every
important part of the pkgsrc infrastructure. This chaptsalibes how regression tests work in pkgsrc
and how you can add new tests.

25.1. Running the regression tests

You rst need to install thepkgtools/pkg_regress package, which provides thekg_regress
command. Then you can simply run that command, which willallitests in theegress category.

25.2. Adding a new regression test

Every directory in theegress category that contains a le calleghec is considered a regression test.
This le is a shell program that is included by tipg_regresscommand. The following functions can
be overridden to suit your needs.

25.2.1. Overridable functions

These functions do not take any parameters. Although theegalted in “set -e” mode, they don't stop at
the rst failing command. See this StackOver ow questiottfty//stackover ow.com/q/4072984) for
detalils.

do_setup

This function prepares the environment for the test. By défadoes nothing.

do_test

This function runs the actual test. By default, it calisST_MAKBwith the arguments
MAKEARGS_TESand writes its output including error messages into therT&ST_OUTFILE.

When de ning this function, make sure that all output tha¢deto be checked is written to the
correct output le. Example:

do_test() {
echo "Example output"
} 1>$TEST_OUTFILE 2>&1

129

Chapter 25. Regression tests

check_result

This function is run after the test and is typically used tmpare the actual output from the one
that is expected. It can make use of the various helper fumefrom the next section. Example:

check_result() {
exit_status 0
output_require "Example"
output_require "[[:alpha:]+[[:space:]][[:alpha:]]{6 1$"
output_prohibit "no such file or directory”
}

do_cleanup

This function cleans everything up after the test has beenBy default it does nothing.

25.2.2. Helper functions

exit_status expected
This function compares the exitcode of e testfunction with its rst parameter. If they differ,
the test will fail.

output_require regex...

This function checks for each of its parameters if the oufigrh do_testmatches the extended
regular expression. If it does not, the test will fail. Exdenp

output_require "looks fine"
output_require "[[:alpha:]+[[:space:]][[:alpha:]]{6 1$"
output_prohibit(regex...)

This function checks for each of its parameters if the oufiorh do_test()doesnot match the
extended regular expression. If any of the regular expsassnatches, the test will fail.

130

Chapter 26.
Porting pkgsrc

The pkgsrc system has already been ported to many opergttenss, hardware architectures and
compilers. This chapter explains the necessary steps te plajsrc even more portable.

26.1. Porting pkgsrc to a new operating system

To port pkgsrc to a new operating system (calgasin this example), you need to touch the following
les:

pkgtools/bootstrap-mk-files/files/mods/ MyOSsys.mk

This le contains some basic de nitions, for example the reaaf the C compiler.

mk/bsd.prefs.mk

Insert code that de nes the variable®SY$SOS_VERSIONLOWER_OS_VERSIQNOWER_VENDQR
MACHINE_ARCHOBJECT_FMTAPPEND_ELFand the other variables that appear in this le.

mk/platform/ MyOSmk

This le contains the platform-speci c de nitions that aresed by pkgsrc. Start by copying one of
the other les and edit it to your needs.

mk/tools/tools. MyOSmk

This le de nes the paths to all the tools that are needed by onthe other package in pkgsrc, as
well as by pkgsrc itself. Find out where these tools are on ptatform and add them.

Now, you should be able to build some basic packagesldilgperl5 |, shells/bash

131

Appendix A.
A simple example package:
bison

We checked to nd a piece of software that wasn't in the pa@sagpllection, and picked GNU bison.
Quite why someone would want to hawison when Berkeleyaccis already present in the tree is
beyond us, but it's useful for the purposes of this exercise.

A.l. les

A.1.1. Make le

$NetBSD$
#

DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}

MAINTAINER= pkgsrc-users@NetBSD.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.ht ml
COMMENT= GNU vyacc clone

GNU_CONFIGURE= yes
INFO_FILES= yes

.include "../../mk/bsd.pkg.mk"

A.1.2. DESCR
GNU version of yacc. Can make re-entrant parsers, and numero us other
improvements. Why you would want this when Berkeley yacc(1) is part

of the NetBSD source tree is beyond me.

A.1.3. PLIST
@comment $NetBSD$

bin/bison
man/manl/bison.1.gz

132

Appendix A. A simple example package: bison

share/bison.simple
share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes vpikigtools/pkglint which helps to check the contents of
these les. After installation it is quite easy to use, justage to the directory of the package you wish
to examine and execupkglint

$ pkglint
looks fine.

Depending on the supplied command line arguments (seepiigh, more checks will be performed.
Use e.gpkglint -Call -Wall for a very thorough check.

A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus anyiatxilirectories:

cd /usr/pkgsrc/lang
mkdir bison

cd bison

mkdir patches

H*H OH K H®

CreateMakefile , DESCRandPLIST (seeChapter 11then continue with fetching the dist le:

make fetch
>> bison-1.25.tar.gz doesn't seem to exist on this system.

>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gn u/l.

Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25 .tar.gz (via ftp://orpheus.amdahl.com:80/)

ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/sy stems/gnu//.

Requesting ftp://wuarchive.wustl.edu/systems/gnu//bi son-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)

ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/Fr eeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfil es//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:¢
Successfully retrieved file.

Generate the checksum of the dist le intistinfo
make makedistinfo

Now compile:

make

>> Checksum OK for bison-1.25.tar.gz.

===> Extracting for bison-1.25
===> Patching for bison-1.25

133

=-==>

=-==>

creating cache ./config.cache
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
updating

Ignoring empty patch directory
Configuring for bison-1.25

for gcc... cc

for minix/config.h...

for
for
for
for
for
for
for
for

string.h... yes
stdlib.h... yes

alloca... yes
strerror... yes

creating ./config.status
creating Makefile

Building for bison-1.25
-DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIBH=1

===>
cc -C
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc

rm -f

sed -e "/Mtline/ s|bison|/usr/pkg/share/bison|" < ./biso

-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1

-DXPFILE=\"/usr/pkg/share/bison.simple\"

-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1

bison.s1

memory.h... yes
working const...
working alloca.h... no

cache ./config.cache

whether we are using GNU C... yes
for a BSD compatible install... /usr/bin/install
how to run the C preprocessor... cc -E
no

for POSIXized ISC... no

whether cross-compiling... no

ANSI C header files... yes

yes

-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1

Appendix A. A simple example package: bison

-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1

-c -0 hin -g bin

-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1

-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC

-DHAVE_STRING_H=1 -DHAVE_STDLIBH=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOC

-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1

Everything seems OK, so install the les:

make install
>> Checksum OK for bison-1.25.tar.gz.
Installing for bison-1.25

=-==>

-DXPFIL

-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1

-g -0 bison LRO.o allocate.o closure.o conflicts.o deriv
Ufiles.c:240: warning: mktemp() possibly used unsafely,

-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1

es.o files.o

consider using mkstemp()

n.simple > bison.s1

134

E1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEAL

-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC
-DHAVE_ALLOC

getargs.o gram.o

Appendix A. A simple example package: bison

sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg /info /usr/pkg/man/manil
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy

rm -f /usr/pkg/man/manl/bison.l /usr/pkg/info/bison.in fo *

install -c -0 bin -g bin -m 555 bison /usr/pkg/bin/bison

lusr/bin/install -c -0 bin -g bin -m 644 bison.s1 /usr/pkg/s hare/bison.simple

Jusr/bin/install -c -0 bin -g bin -m 644 ./bison.hairy /usr/ pkg/share/bison.hairy

cd .; for f in bison.info *: do /usr/bin/install -c -0 bin -g bin -m 644 $f /usr/pkg/info /$f;
Jusr/bin/install -c -0 bin -g bin -m 644 ./bison.1 /usr/pkg/ man/manl/bison.1

===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - removelit pkity_delete bison Should you decide
that you want a binary package, do this now:

make package

>> Checksum OK for bison-1.25.tar.gz.

===> Building package for bison-1.25

Creating package bison-1.25.tgz

Registering depends:.

Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison- 1.25.t97'

Now that you don't need the source and object les any moraciup:

make clean
===> Cleaning for bison-1.25

135

Appendix B.
Build logs

B.1. Building glet

make

===> Checking for vulnerabilities in figlet-2.2.1nb2

=> figlet221.tar.gz doesn't seem to exist on this system.

=> Attempting to fetch figlet221.tar.gz from ftp:/ftp.fi glet.org/pub/figlet/program/unix/.
=> [172219 bytes]

Connected to ftp.plig.net.

220 ftp.plig.org NcFTPd Server (licensed copy) ready.

331 Guest login ok, send your complete e-mail address as pass word.
230-You are user #5 of 500 simultaneous users allowed.

230-

230- _ _

230- | o e

230- | | e

230- | _F b e

230- (I I || ||

230-

230- »» Welcome to ftp.plig.org o

230-

230-Please note that all transfers from this FTP site are log ged. If you
230-do not like this, please disconnect now.

230-

230-This archive is available via

230-

230-HTTP: http://ftp.plig.org/

230-FTP: ftp://ftp.plig.org/ (max 500 connections)

230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)

230-

230-Please email comments, bug reports and requests for pac kages to be
230-mirrored to ftp-admin@plig.org.

230-

230-

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type okay.

250 "/pub" is new cwd.

250-"/pubffiglet" is new cwd.

250-

250-Welcome to the figlet archive at ftp.figlet.org
250-

250- ftp://ftp.figlet.org/publ/figlet/

136

250-

250-The official FIGlet web page is:

250- http://www.figlet.org/

250-

250-If you have questions, please mailto:info@figlet.org
250-contribute a font or something else, you can email us.
250

250 "/publfiglet/program” is new cwd.

250 "/publ/figlet/program/unix" is new cwd.

local: figlet221.tar.gz remote: figlet221.tar.gz

502 Unimplemented command.

227 Entering Passive Mode (195,40,6,41,246,104)

150 Data connection accepted from 84.128.86.72:65131; tra
38% |*~k****~k**~k**** | 65800
226 Transfer completed.

172219 bytes received in 00:02 (75.99 KB/s)

221 Goodbye.

=> Checksum OK for figlet221.tar.gz.

===> Extracting for figlet-2.2.1nb2

Appendix B. Build logs

. If you want to

nsfer starting for figlet221.tar.gz
64.16 KB/s 00:01 ETA

===> Required installed package ccache-[0-9] *: ccache-2.3nb1 found

===> Patching for figlet-2.2.1nb2

===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Qverriding tools for figlet-2.2.1nb2

===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2

===> Building for figlet-2.2.1nb2

gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DD
chmod a+x figlet

gcc -O2 -o chkfont chkfont.c

=> Unwrapping files-to-be-installed.

#

make install

===> Checking for vulnerabilities in figlet-2.2.1nb2
===> |nstalling for figlet-2.2.1nb2

install -d -0 root -g wheel -m 755 /usr/pkg/bin
install -d -0 root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet

cp figlet /usr/pkg/bin

cp chkfont /usr/pkg/bin

chmod 555 figlist showfigfonts

cp figlist /usr/pkg/bin

cp showfigfonts /usr/pkg/bin

cp fonts/ = .flf /usr/pkg/share/figlet

cp fonts/ = .flc /usr/pkg/share/figlet

cp figlet.6 /usr/pkg/man/man6

===> Registering installation for figlet-2.2.1nb2

#

EFAULTFONTFILE=\"standard.flf\"

137

figlet.c

Appendix B. Build logs
B.2. Packaging glet

make package

===> Checking for vulnerabilities in figlet-2.2.1nb2

===> Packaging figlet-2.2.1nb2

===> Building binary package for figlet-2.2.1nb2

Creating package /home/cvs/pkgsrc/packages/i386/All/f iglet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg

Registering depends:.

#

138

Appendix C.
Directory layout of the pkgsrc
FTP server

As in other big projects, the directory layout of pkgsrc istegeomplex for newbies. This chapter
explains where you nd things on the FTP server. The basettirg onftp.NetBSD.org IS
Ipub/pkgsrc/ (ftp://ftp.NetBSD.org/pub/pkgsrc/). On other servenniy be different, but inside this
directory, everything should look the same, no matter orctviserver you are. This directory contains
some subdirectories, which are explained below.

C.1. distfiles : The distributed source les

The directorydistfiles contains lots of archive les from all pkgsrc packages, whace mirrored

here. The subdirectories are called after their packagesamd are used when the distributed les have
names that don't explicitly contain a version number or ahepowise too generic (for example
release.tar.gz).

C.2. misc : Miscellaneous things

This directory contains things that individual pkgsrc depers nd worth publishing.

C.3. packages : Binary packages

This directory contains binary packages for the varioutf@las that are supported by pkgsrc. Each
subdirectory is of the forroPSY$ARCHOSVERSION_TAGThe meaning of these variables is:

« OPSYSs the name of the operating system for which the packagesleen built. The name is taken
from the output of theiname command, so it may differ from the one you are used to hear.

- ARCHs the hardware architecture of the platform for which thekages have been built. It also
includes theaBI (Application Binary Interface) for platforms that have sesd of them.

« OSVERSIONS the version of the operating system. For version numibetschange often (for
example NetBSD-current), the often-changing part shoelteplaced with ar, for examplet.99.x .

« TAGis either20xx Qy for a stable branch, dread for packages built from the HEAD branch. The
latter should only be used when the packages are updatedeguilar basis. Otherwise the date from
checking out pkgsrc should be appended, for exargse_20071015 .

139

Appendix C. Directory layout of the pkgsrc FTP server

The rationale for exactly this scheme is that the pkgsrcauseking for binary packages can quickly
click through the directories on the server and nd the bésaly packages for their machines. Since
they usually know the operating system and the hardwarétactire, OPSYS and ARCH are placed
rst. After these choices, they can select the best comhinaif OSVERSION and TAG together, since
it is usually the case that packages stay compatible betdiéferent version of the operating system.

In each of these directories, there is a whole binary packegkection for a speci ¢ platform. It has a
directory calledAll which contains all binary packages. Besides that, thereaieus category
directories that contain symbolic links to the real binaagkages.

C.4. reports : Bulk build reports

Here are the reports from bulk builds, for those who want tgpackages that didn't build on some of the
platforms. The structure of subdirectories should look litte one irSection C.3

C.5. current , pkgsrc-20 xx Qy: source packages

These directories contain the “real” pkgsrc, that is thes tkat de ne how to create binary packages
from source archives.

The directorypkgsrc contains a snapshot of the CVS repository, which is updagdiarly. The le
pkgsrc.tar.gz contains the same as the directory, ready to be downloaded/hbsle.

In the directories for the quarterly branches, there is alitiathal le called pkgsrc-20 xx Qy .tar.gz
which contains the state of pkgsrc when it was branched.

140

Appendix D.
Editing guidelines for the pkgsrc

guide

This section contains information on editing the pkgsragutself.

D.1. Make targets

The pkgsrc guide's source code is storeg@kgsrc/doc/guide/files ,and several les are created
fromit:

» pkgsrc/doc/pkgsrc.txt

» pkgsrc/doc/pkgsrc.html

« http://www.NetBSD.org/docs/pkgsrc/

- http://www.NetBSD.org/docs/pkgsrc/pkgsrc.pdf: The Pifsion of the pkgsrc guide.
- http://www.NetBSD.org/docs/pkgsrc/pkgsrc.ps: PosfBsersion of the pkgsrc guide.

D.2. Procedure

The procedure to edit the pkgsrc guide is:

1. Make sure you have the packages needed to regenerategsre pkide (and other XML-based
NetBSD documentation) installed. These are automatigaialled when you install the
meta-pkgs/pkgsrc-guide-tools package.

2. Runcd doc/guideto get to the right directory. All further steps will take pihere.
Edit the XML le(s) in files/

4. Runbmaketo check the pkgsrc guide for valid XML and to build the naltput les. If you get
any errors at this stage, you can just edit the les, as thex@aly symbolic links in the working
directory, pointing to the les irfiles/

5. (cd les && cvs commit)
6. Runbmake clean && bmake to regenerate the output les with the proper RCS Ids.

7. Runbmake regento install and commit the les in bothkgsrc/doc andhtdocs .

Note: If you have added, removed or renamed some chapters, you need to synchronize them
using cvs add or cvs delete in the htdocs directory.

141

Appendix D. Editing guidelines for the pkgsrc guide

142

	The pkgsrc guide
	Table of Contents
	List of Tables
	Chapter 1.
	What is pkgsrc?
	1.1. Introduction
	1.1.1. Why pkgsrc?
	1.1.2. Supported platforms

	1.2. Overview
	1.3. Terminology
	1.3.1. Roles involved in pkgsrc

	1.4. Typography

	I. The pkgsrc user's guide
	Chapter 2.
	Where to get pkgsrc and how to keep it uptodate
	2.1. Getting pkgsrc for the first time
	2.1.1. As tar archive
	2.1.2. Via anonymous CVS

	2.2. Keeping pkgsrc uptodate
	2.2.1. Via tar files
	2.2.2. Via CVS
	2.2.2.1. Switching between different pkgsrc branches
	2.2.2.2. What happens to my changes when updating?

	Chapter 3.
	Using pkgsrc on systems other than NetBSD
	3.1. Binary distribution
	3.2. Bootstrapping pkgsrc

	Chapter 4.
	Using pkgsrc
	4.1. Using binary packages
	4.1.1. Finding binary packages
	4.1.2. Installing binary packages
	4.1.3. Deinstalling packages
	4.1.4. Getting information about installed packages
	4.1.5. Checking for security vulnerabilities in installed packages
	4.1.6. Finding if newer versions of your installed packages are in pkgsrc
	4.1.7. Other administrative functions

	4.2. Building packages from source
	4.2.1. Requirements
	4.2.2. Fetching distfiles
	4.2.3. How to build and install

	Chapter 5.
	Configuring pkgsrc
	5.1. General configuration
	5.2. Variables affecting the build process
	5.3. Variables affecting the installation process
	5.4. Selecting and configuring the compiler
	5.4.1. Selecting the compiler
	5.4.2. Additional flags to the compiler (CFLAGS)
	5.4.3. Additional flags to the linker (LDFLAGS)

	5.5. Developer/advanced settings
	5.6. Selecting Build Options

	Chapter 6.
	Creating binary packages
	6.1. Building a single binary package
	6.2. Settings for creation of binary packages

	Chapter 7.
	Creating binary packages for everything in pkgsrc (bulk builds)
	7.1. Preparations
	7.2. Running a pbulkstyle bulk build
	7.2.1. Configuration

	7.3. Requirements of a full bulk build
	7.4. Creating a multiple CDROM packages collection
	7.4.1. Example of cdpack

	Chapter 8.
	Directory layout of the installed files
	8.1. File system layout in ${LOCALBASE}
	8.2. File system layout in ${VARBASE}

	Chapter 9.
	Frequently Asked Questions
	9.1. Are there any mailing lists for pkgrelated discussion?
	9.2. Utilities for package management (pkgtools)
	9.3. How to use pkgsrc as nonroot
	9.4. How to resume transfers when fetching distfiles?
	9.5. How can I install/use modular X.org from pkgsrc?
	9.6. How to fetch files from behind a firewall
	9.7. How to fetch files from HTTPS sites
	9.8. How do I tell make fetch to do passive FTP?
	9.9. How to fetch all distfiles at once
	9.10. What does Don't know how to make /usr/share/tmac/tmac.andoc mean?
	9.11. What does Could not find bsd.own.mk mean?
	9.12. Using 'sudo' with pkgsrc
	9.13. How do I change the location of configuration files?
	9.14. Automated security checks
	9.15. Why do some packages ignore my CFLAGS?
	9.16. A package does not build. What shall I do?
	9.17. What does Makefile appears to contain unresolved cvs/rcs/??? merge conflicts mean?

	II. The pkgsrc developer's guide
	Chapter 10.
	Creating a new pkgsrc package from scratch
	10.1. Common types of packages
	10.1.1. Perl modules
	10.1.2. Python modules and programs

	10.2. Examples
	10.2.1. How the www/nvu package came into pkgsrc
	10.2.1.1. The initial package
	10.2.1.2. Fixing all kinds of problems to make the package work
	10.2.1.3. Installing the package

	Chapter 11.
	Package components files, directories and contents
	11.1. Makefile
	11.2. distinfo
	11.3. patches/*
	11.3.1. Structure of a single patch file
	11.3.2. Creating patch files
	11.3.3. Sources where the patch files come from
	11.3.4. Patching guidelines
	11.3.5. Feedback to the author

	11.4. Other mandatory files
	11.5. Optional files
	11.5.1. Files affecting the binary package
	11.5.2. Files affecting the build process
	11.5.3. Files affecting nothing at all

	11.6. work*
	11.7. files/*

	Chapter 12.
	Programming in Makefiles
	12.1. Caveats
	12.2. Makefile variables
	12.2.1. Naming conventions

	12.3. Code snippets
	12.3.1. Adding things to a list
	12.3.2. Echoing a string exactly asis
	12.3.3. Passing CFLAGS to GNU configure scripts
	12.3.4. Handling possibly empty variables

	Chapter 13.
	PLIST issues
	13.1. RCS ID
	13.2. Semiautomatic PLIST generation
	13.3. Tweaking output of make printPLIST
	13.4. Variable substitution in PLIST
	13.5. Man page compression
	13.6. Changing PLIST source with PLISTSRC
	13.7. Platformspecific and differing PLISTs
	13.8. Buildspecific PLISTs
	13.9. Sharing directories between packages

	Chapter 14.
	Buildlink methodology
	14.1. Converting packages to use buildlink3
	14.2. Writing buildlink3.mk files
	14.2.1. Anatomy of a buildlink3.mk file
	14.2.2. Updating BUILDLINKAPIDEPENDS.pkg and BUILDLINKABIDEPENDS.pkg in buildlink3.mk files

	14.3. Writing builtin.mk files
	14.3.1. Anatomy of a builtin.mk file
	14.3.2. Global preferences for native or pkgsrc software

	Chapter 15.
	The pkginstall framework
	15.1. Files and directories outside the installation prefix
	15.1.1. Directory manipulation
	15.1.2. File manipulation

	15.2. Configuration files
	15.2.1. How PKGSYSCONFDIR is set
	15.2.2. Telling the software where configuration files are
	15.2.3. Patching installations
	15.2.4. Disabling handling of configuration files

	15.3. System startup scripts
	15.3.1. Disabling handling of system startup scripts

	15.4. System users and groups
	15.5. System shells
	15.5.1. Disabling shell registration

	15.6. Fonts
	15.6.1. Disabling automatic update of the fonts databases

	Chapter 16.
	Options handling
	16.1. Global default options
	16.2. Converting packages to use bsd.options.mk
	16.3. Option Names
	16.4. Determining the options of dependencies

	Chapter 17.
	The build process
	17.1. Introduction
	17.2. Program location
	17.3. Directories used during the build process
	17.4. Running a phase
	17.5. The fetch phase
	17.5.1. What to fetch and where to get it from
	17.5.2. How are the files fetched?

	17.6. The checksum phase
	17.7. The extract phase
	17.8. The patch phase
	17.9. The tools phase
	17.10. The wrapper phase
	17.11. The configure phase
	17.12. The build phase
	17.13. The test phase
	17.14. The install phase
	17.15. The package phase
	17.16. Cleaning up
	17.17. Other helpful targets

	Chapter 18.
	Tools needed for building or running
	18.1. Tools for pkgsrc builds
	18.2. Tools needed by packages
	18.3. Tools provided by platforms

	Chapter 19.
	Making your package work
	19.1. General operation
	19.1.1. How to pull in usersettable variables from mk.conf
	19.1.2. User interaction
	19.1.3. Handling licenses
	19.1.3.1. Adding a package with a new license
	19.1.3.2. Change to the license

	19.1.4. Restricted packages
	19.1.5. Handling dependencies
	19.1.6. Handling conflicts with other packages
	19.1.7. Packages that cannot or should not be built
	19.1.8. Packages which should not be deleted, once installed
	19.1.9. Handling packages with security problems
	19.1.10. How to handle incrementing versions when fixing an existing package
	19.1.11. Substituting variable text in the package files (the SUBST framework)

	19.2. The fetch phase
	19.2.1. Packages whose distfiles aren't available for plain downloading
	19.2.2. How to handle modified distfiles with the 'old' name
	19.2.3. Packages hosted on github.com
	19.2.3.1. Fetch based on a tagged release
	19.2.3.2. Fetch based on a specific commit
	19.2.3.3. Fetch based on release

	19.3. The configure phase
	19.3.1. Shared libraries libtool
	19.3.2. Using libtool on GNU packages that already support libtool
	19.3.3. GNU Autoconf/Automake

	19.4. Programming languages
	19.4.1. C, C++, and Fortran
	19.4.2. Java
	19.4.3. Packages containing perl scripts
	19.4.4. Packages containing shell scripts
	19.4.5. Other programming languages

	19.5. The build phase
	19.5.1. Compiling C and C++ code conditionally
	19.5.1.1. C preprocessor macros to identify the operating system
	19.5.1.2. C preprocessor macros to identify the hardware architecture
	19.5.1.3. C preprocessor macros to identify the compiler

	19.5.2. How to handle compiler bugs
	19.5.3. Undefined reference to ...
	19.5.3.1. Special issue: The SunPro compiler

	19.5.4. Running out of memory

	19.6. The install phase
	19.6.1. Creating needed directories
	19.6.2. Where to install documentation
	19.6.3. Installing highscore files
	19.6.4. Adding DESTDIR support to packages
	19.6.5. Packages with hardcoded paths to other interpreters
	19.6.6. Packages installing perl modules
	19.6.7. Packages installing info files
	19.6.8. Packages installing man pages
	19.6.9. Packages installing GConf data files
	19.6.10. Packages installing scrollkeeper/rarian data files
	19.6.11. Packages installing X11 fonts
	19.6.12. Packages installing GTK2 modules
	19.6.13. Packages installing SGML or XML data
	19.6.14. Packages installing extensions to the MIME database
	19.6.15. Packages using intltool
	19.6.16. Packages installing startup scripts
	19.6.17. Packages installing TeX modules
	19.6.18. Packages supporting running binaries in emulation
	19.6.19. Packages installing hicolor theme icons
	19.6.20. Packages installing desktop files

	19.7. Marking packages as having problems

	Chapter 20.
	Debugging
	Chapter 21.
	Submitting and Committing
	21.1. Submitting binary packages
	21.2. Submitting source packages (for nonNetBSDdevelopers)
	21.3. General notes when adding, updating, or removing packages
	21.4. Commit Messages
	21.5. Committing: Adding a package to CVS
	21.6. Updating a package to a newer version
	21.7. Renaming a package in pkgsrc
	21.8. Moving a package in pkgsrc

	Chapter 22.
	Frequently Asked Questions
	Chapter 23.
	GNOME packaging and porting
	23.1. Meta packages
	23.2. Packaging a GNOME application
	23.3. Updating GNOME to a newer version
	23.4. Patching guidelines

	III. The pkgsrc infrastructure internals
	Chapter 24.
	Design of the pkgsrc infrastructure
	24.1. The meaning of variable definitions
	24.2. Avoiding problems before they arise
	24.3. Variable evaluation
	24.3.1. At load time
	24.3.2. At runtime

	24.4. How can variables be specified?
	24.5. Designing interfaces for Makefile fragments
	24.5.1. Procedures with parameters
	24.5.2. Actions taken on behalf of parameters

	24.6. The order in which files are loaded
	24.6.1. The order in bsd.prefs.mk
	24.6.2. The order in bsd.pkg.mk

	Chapter 25.
	Regression tests
	25.1. Running the regression tests
	25.2. Adding a new regression test
	25.2.1. Overridable functions
	25.2.2. Helper functions

	Chapter 26.
	Porting pkgsrc
	26.1. Porting pkgsrc to a new operating system

	Appendix A.
	A simple example package: bison
	A.1. files
	A.1.1. Makefile
	A.1.2. DESCR
	A.1.3. PLIST
	A.1.4. Checking a package with pkglint

	A.2. Steps for building, installing, packaging

	Appendix B.
	Build logs
	B.1. Building figlet
	B.2. Packaging figlet

	Appendix C.
	Directory layout of the pkgsrc FTP server
	C.1. distfiles: The distributed source files
	C.2. misc: Miscellaneous things
	C.3. packages: Binary packages
	C.4. reports: Bulk build reports
	C.5. current, pkgsrc20xxQy: source packages

	Appendix D.

